A Survey to Nature Inspired Soft Computing

Deepak Kumar, Amity University, Noida, India
Sushil Kumar, Amity University, Noida, India
Rohit Bansal, Management Department, Rajiv Gandhi Institute of Petroleum Technology, Noida, India
Parveen Singla, ECE Department, Chandigarh Engineering College, Landran, India

ABSTRACT

This article describes how swarm intelligence (SI) and bio-inspired techniques shape in-vogue topics in the advancements of the latest algorithms. These algorithms can work on the basis of SI, using physical, chemical and biological frameworks. The authors can name these algorithms as SI-based, inspired by biology, physics and chemistry as per the basic concept behind the particular algorithm. A couple of calculations have ended up being exceptionally effective and consequently have turned out to be the mainstream devices for taking care of real-world issues. In this article, the reason for this survey is to show a moderately complete list of the considerable number of algorithms in order to boost research in these algorithms. This article discusses Ant Colony Optimization (ACO), the Cuckoo Search, the Firefly Algorithm, Particle Swarm Optimization and Genetic Algorithms in detail. For ACO a real-time problem, known as Travelling Salesman Problem, is considered while for other algorithms a min-sphere problem is considered, which is well known for comparison of swarm techniques.

KEYWORDS

Ant Colony Optimization, Cuckoo Search, Firefly Algorithm, Genetic Algorithm, Particle Swarm Optimization, Swarm Intelligence

INTRODUCTION

Swarm intelligence and bio-inspired methodologies shape in vogue topic in the advancements of latest algorithms on the basis of natural characteristics (Engelbrecht, 2006). The above discussed algorithms can work on the basis of swarm intelligence, physical, chemical and biological frameworks. In this way, we can name these algorithms as swarm-intelligence-based, inspired by biology, physics and chemistry, as per the basic concept behind the particular algorithm. In spite of the fact that not every one of them is productive, a couple of calculations have ended up being exceptionally effective and consequently have turned out to be mainstream devices for taking care of real-world issues (Dorigo et al., 2006; Bonabeau, 1999). The reason for this survey is to show a moderately complete list of the considerable number of algorithms in the research article in order to boost up the research in these algorithms.

A number of researchers have been motivated by nature in numerous manners and therefore we can define it as a rich source of inspiration. These days, most new calculations are nature-enlivened, in light of the fact that they have been created by drawing motivation from nature. Indeed, even with the

DOI: 10.4018/IJISMD.2017040107

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
accentuation on the source of motivation, we can at present have diverse levels of orders; contingent upon how details and what number of sub sources we will require applying. We will apply the most elevated sources for the sake of simplicity. These sources are like biology, physics or chemistry.

In the extreme nonspecific term, nature is the primary inspirational source. Accordingly, all new calculations can be alluded to as nature-motivated. The larger part of nature-inspired algorithms depend on some effective attributes of organic framework. Thus, the biggest portion of nature-motivated algorithms is biology-inspired.

Among all bio-inspired algorithms discussed above, a unique category of algorithms have been produced by getting inspired from swarm intelligence. Along these lines, a portion of the bio-inspired algorithms can be termed as algorithms based on swarm-intelligence. As a matter of fact, these are most well-known algorithms. Some of the well-known examples are ant colony optimization, particle swarm optimization, cuckoo search, bat algorithm, and firefly algorithm (Yaseen and Al-Slamy, 2008; Shi, 2004; Yang and Deb, 2009; Tsai et al., 2011; Yand and He 2013).

Clearly, we can understand that all algorithms were not working on the concept of biological systems. A number of them have been produced with the help of physical and chemical systems. A few of them may even base on music. In the following sections of the research article, we will quickly classify all algorithms into various classes, and we don't guarantee that this classification is not general. This is a decent attempt to give adequately detailed references. To cover various classes of engineering applications, considered algorithms are tested on distinct problems.

ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is as a meta-heuristic algorithm that works on the basis of working of a combination of positive feedback, distributed computation, and greediness to discover an ideal solution for optimization issues. As its name implies, this algorithm is based on movement pattern of the ants. This algorithm is a derivative of Swarm intelligence (SI) (Colorni et al., 1992). He studied the complex social behaviour of ants and concluded that it could be very useful in solving complex optimization problems.

The principal concept behind this algorithm is based on the unique ability of ants to find the shortest route. Ants go here and there in search of food and they establish their communication with the other ants by laying down pheromones along their trails. The term pheromone refers to a chemical which is laid down by the ants so that other ants can smell it and follow the same path. This dropping of the pheromone by many ants forms a trail and thus creates a path. In this way, they will be able to find the path from their home to the source of food and back to their home.

We can see the behaviour of ants with the help of a double bridge experiment as shown in Figure 1. For this situation, due to the similar pheromone dropping system, normally the shortest branch is being chosen. The two shortest branches help any two ants to reach at their destination i.e. the source of food. On their way, this dropping of the pheromone by many ants forms a trail and thus creates a path. In this way, they will be able to find the path from their home to the source of food and back to their home.

The intensity of the pheromone varies due to the evaporation. The ants select the path on the basis of the high intensity of the trail. So, in the case there is an obstacle in their path, or they found a much shorter route, then they change their way and it will increase the concentration of the pheromone on the new path in comparison to the previous one. Hence, all ants will start following the new path due to the high concentration trail on that path.
Related Content

Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent Systems and Services
www.igi-global.com/article/secure-key-generation-static-visual/39098?camid=4v1a

An SMT-based Approach for Generating Coverage Oriented Metamodel Instances
www.igi-global.com/article/an-smt-based-approach-for-generating-coverage-oriented-metamodel-instances/170518?camid=4v1a
Not Ready for Prime Time: A Survey on Security in Model Driven Development
www.igi-global.com/chapter/not-ready-prime-time/72199?camid=4v1a

Motivation in Component-Based Software Development
www.igi-global.com/chapter/motivation-component-based-software-development/29410?camid=4v1a