Chapter 13
Genius, Creativity and (Not) Eating Meat

İsmail Hakki Tekiner
Istanbul Gelişim University, Turkey

Ahmad Ni’matullah Al-Baarri
Diponegoro University, Indonesia

Diana Bogueva
Curtin University, Australia

ABSTRACT
A major hypothesis argues that the dietary shifts of the proto-humans towards animal proteins enabled humans to develop large brains as well as build planning, cooperating, socializing, exploring and creative skills, related to food techniques, including using fire, cooking, fermentation, agriculture and animal domestication. Many million years later, human population has drastically increased and livestock has grown even faster creating unprecedented global environmental, climate change and health challenges. This chapter asks whether animal meat continues to be essential for human nutrition. It refers to prominent people in human history considered geniuses because of their creative and intellectual abilities. It explores whether there is a link between genius, creativity and eating meat and answers this in the negative based on well-known geniuses who have negated the meat-eating diet. Social marketing can anchor some of its techniques in using such personalities as role models for changing the current high dependence on meat.

INTRODUCTION
The modern human brain is the largest and most complex organ among the living primates. Constituting only about 2 percent of the human body, the brain is responsible for all body functions (NMNH, 2017). The major causes for the physical growth and creativity of the human brain have been of boundless research interest.

DOI: 10.4018/978-1-5225-4757-0.ch013
A major hypothesis about the evolution of the human brain relates to dietary shifts in the human nutrition (Schoenemann, 2006). According to the anthropologists (Joyce, 2010), the proto-humans started consuming a diet rich in animal proteins, especially meat, with the use of fire and cooking. Animal protein from the meat initially provided sufficient nutrition and energy for the physical growth of the human brain. Subsequently, the increased brain size positively influenced the development of intelligence, and hereby enabled humans to plan, cooperate and socialize (Smil, 2013). Although anthropology tells us something about the positives of eating meat linked to physical growth and the relative size of the human brain, it does not convey anything about creativity and talent. We do not know whether eating meat has contributed to the development of exceptional intellectual, creative, knowledge and wisdom abilities and talents associated with being a genius. There are also some other major dietary shifts in the human evolution, including cooking, fermenting, plant growing, animal domestication and agriculture (Luca et al., 2010).

According to Dunn (2012) from the Scientific American, human ancestors were nearly all vegetarians, and the human digestive systems evolved as the practices of growing, producing, processing and preparing food developed. The gut microbiota seems to have evolved too and in fact varies according to the adopted food practices. For instance, some populations in Japan have bacteria in their guts allowing them to break down seaweed – a foodstuff popular for them and not so common in other places (Dunn, 2012).

Humans evolved with eating meat (Gupta, 2016), supplied with no guaranteed luck by male hunter-gatherers, but also with good quantities of fruits, vegetables, roots, seeds and nuts collected by females. Later agriculture allowed the ploughing of the land to produce crops, followed by domestication of animals. Although meat does provide some valuable micronutrients and essential fats, according to Prof. Peter Ungar it is carbohydrates, not meat that fuel the human brain (in Despain, 2012). He also explains: “The hominin lifestyle is more about a broadened niche than meat per se… Lots of people live in lots of places because they can find something to nourish themselves… Western Australian aboriginals did quite well without lots of meat” (Ungar in Despain, 2012).

The evolution came after the discovery of fire, which enabled humans to cook their meat to increase its digestibility, making it more tender, tastier and even reducing the risk of infection (Ali, 2015, p. 25). Actually, cooking or heat treatment was more important than meat for the evolution of the human brain. According to Herculano-Houzel (2012, p. 10667), “the advent of the ability to control fire to cook foods, which increases enormously the energy yield of foods and the speed with which they are consumed…, may have been a crucial step in allowing the near doubling of numbers of brain neurons that is estimated to have occurred between H. erectus and H. sapiens”. The use of fire freed up time from chewing to obtain the daily calorific intake, which humans used to their advantage developing remarkable cognitive abilities (Herculano-Houzel, 2012).

Cooking starch-rich vegetables and grains – that is digestible carbohydrates, was necessary in human evolution “to accommodate the increased metabolic demands of a growing brain… cooked starch, a source of preformed glucose, greatly increased energy availability to human tissues with high glucose demands, such as the brain, red blood cells, and the developing fetus” (Hardy et al., 2015, p. 252). Based on these findings, the researchers point out: “Eating meat may have kick started the evolution of bigger brains, but cooked starchy foods together with more salivary amylase genes made us smarter still” (in Millner, 2015).