Player-Driven Video Analysis to Enhance Reflective Soccer Practice in Talent Development

Anders Hjort, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
Kristoffer Henriksen, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
Lars Elbæk, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark

ABSTRACT

In the present article, we investigate the introduction of a cloud-based video analysis platform called Player Universe (PU). Video analysis is not a new performance-enhancing element in sports, but PU is innovative in how it facilitates reflective learning. Video analysis is executed in the PU platform by involving the players in the analysis process, in the sense that they are encouraged to tag game actions in video-coded soccer matches. Following this, players can get virtual feedback from their coach. Findings show that PU can improve youth soccer players’ reflection skills through consistent video analyses and tagging; coaches are important as role models and providers of feedback; and that the use of the platform primarily stimulated deliberate practice activities. PU can be seen as a source of inspiration for soccer players and clubs as to how analytical platforms can motivate and enhance reflective learning for better in-game performance.

KEYWORDS
Deliberate Play & Practice, Design Research, Motivation, Reflective Practice, Self-Awareness, Video Analysis,

INTRODUCTION

In sports, the purpose of talent development is to help young athletes make a smooth transition to the elite level and unfold their potential (Stambulova, Alfermann, Statler, & Côté, 2009). It has become “big business” and many soccer clubs invest a huge amount of resources in selecting and developing talent (Middlemas & Harwood, 2017). If a player reaches a high level of expertise at a young age, he might potentially make a lot of money himself and the club will also gain a bottom-line profit.

Talent development research has evolved radically over the years. The holistic ecological approach (Henriksen, 2010; Henriksen, Stambulova, & Roessler, 2010a), which is a more recent approach, proposes a shift in research attention from the individual athletes towards the broader developmental context or environment in which they develop. From this perspective, a talent development environment is defined as a dynamic system comprising a micro-level, where athletic and personal development take place, a macro-level, which is the larger context in which these surroundings are embedded, and the organizational culture of the sports club or team, as well as the interrelationships between these elements (Henriksen, 2010). Previous studies have shown that a variety of different methods is conducive to efficient talent development, such as integrated and holistic strategies, role models,
specified expectations, training programs, informal athlete-coach relationships and ownership (Martindale et al., 2007; Middlemas & Harwood, 2017). Research has shown that good learning skills, self-awareness and reflection are prerequisites for such accelerated learning (Larsen et al., 2012).

The desire to maximize learning within youth soccer has led to the widespread use of video-based performance analysis by coaches and athletes within the soccer environment (Drust, 2010). Specific methods include player trajectory extraction, content retrieval and indexing, highlight detection, 3D reconstruction of the soccer match, tactical analysis, statistical evaluations, etc. (Manaffifard et al., 2017). The aims of using analytical and statistical tools are mainly to support coaching decisions and guide player’s development and player in-game decision making and targeted development. These supportive tools seem not to be a “one-size-fits-all” learning approach or as simple as is sometimes assumed (Stratton et al., 2004).

Integrated tools like these aims to strengthen overall game intelligence. Video clips with encoded information on specific game elements are a less expensive option and may serve for reflection and support feedback (Kelly, 2017).

It is also known that learning through understanding, such as that practiced in Teaching Game for Understanding (TGfU), and the reflective practice in line with this concept facilitate learning and, along with the practice of feedback used as part of TGfU, are supportive of implicit decision-making (Kelly, 2017). Reflection involves self-awareness, especially if it is conceptualized in different ways and contains multiple levels. As such, reflection facilitates the deduction of practical and meaningful insights and embraces looking back and mirroring one’s own actions, thereby understanding implicit actions (Kelly, 2017). Feedback between players and coaches is crucial in the learning process due to the improvement of skill performance, the increased motivation, and the players’ positive self-concept. This is especially true if the coach-athlete relationship is based on high amounts of feedback, instruction, and encouragement. Furthermore, this should be delivered in a positive manner, and divergent questioning will support the players’ cognitive development, awareness, and problem-solving skills (Kelly, 2017).

The complexity of youth talent development in soccer poses a number of challenges concerning psychological factors that influence the video feedback (VFB) and in-game performance. A number of recent studies have begun to shed light on the ways in which elite team sports coaches and athletes interact within applied video practice (e.g. Groom, et al., 2012; Mackenzie & Cushion, 2014; Taylor, et al., 2015). Those studies emphasized the importance of coaches treating athletes as individuals, knowing what players liked doing and what they did not, and creating an environment in which athletes can be open in their responses without fear of judgment. The above-mentioned challenges seem important to manage when establishing a VFB-learning environment. What seems to be crucial is to avoid a team delivery context, because it might cause anxiety, embarrassment, or be demotivating or meaningless due to the lack of focus on individual needs (Middlemas & Harwood, 2017). It is argued that coaches may benefit a coach- and player-driven approach to performance analysis in the players’ decision-making capabilities. To gain more in-depth insights into these challenges, our study focused on understanding individual VFB provided between the player and coach through using the video analytical and communicative tools of Player Universe (PU). Research has also shown that, in order to enhance motivation for using digitally driven tools, the design of such tools should include game-based and playful elements (Jensen et al., 2017).

In this paper, we investigate learning, motivation and user potential by introducing the cloud-based video analysis tool Player Universe (PU) in the context of the “School of Excellence” (SE) youth soccer college, part of the most successful Danish soccer club, FC Copenhagen (FCK).

The eye4TALENT Platform

The eye4TALENT cloud-based platform offers four tools for talent development containing a scout, trainer, player, and management universe. The platform part concerning the player Universe (PU) offers a video-based analytical tool. Moreover, the PU compiles several psychological testing and
Related Content

Gamification and Smart Feedback: Experiences with a Primary School Level Math App
Michael D. Kickmeier-Rust, Eva-C. Hillemann and Dietrich Albert (2014). *International Journal of Game-Based Learning* (pp. 35-46).
[www.igi-global.com/article/gamification-and-smart-feedback/117698?camid=4v1a](www.igi-global.com/article/gamification-and-smart-feedback/117698?camid=4v1a)

Attitudes Toward Game Adoption: Preservice Teachers Consider Game-Based Teaching and Learning
[www.igi-global.com/article/attitudes-toward-game-adoption/206856?camid=4v1a](www.igi-global.com/article/attitudes-toward-game-adoption/206856?camid=4v1a)
Weaving Science Webs: E-Learning and Virtual Science Centers
Susan Hazan (2005). E-Learning and Virtual Science Centers (pp. 93-109).
www.igi-global.com/chapter/weaving-science-webs/9080?camid=4v1a

Gamified Assessment Supported by a Dynamic 3D Collaborative Game
www.igi-global.com/article/gamified-assessment-supported-by-a-dynamic-3d-collaborative-game/128266?camid=4v1a