Chapter 4
Biopreservatives for Improved Shelf-Life and Safety of Dairy Products: Biopreservatives for Dairy Products

Tejinder Pal Singh
College of Dairy Science and Food Technology, India

Sarang Dilip Pophaly
College of Dairy Science and Food Technology, India

Ruby Siwach
College of Dairy Science and Food Technology, India

ABSTRACT

Globally, there is an increasing demand for minimally processed, easily prepared, and ready-to-eat fresh food, globalization of food trade, and distribution from centralized processing which pose major challenges for food safety and quality because perishable food may get contaminated with undesirable microorganisms. Food spoilage adversely affects the economy and also erodes the consumer’s confidence. On other hand, food-borne illness leads to loss of earnings and productivity, unemployment and litigation, and weakens trade and tourism. Another challenge for the food producers is to produce less stable foods by processes that confer less harm to the detrimental microflora. A challenge for food producers is to develop products with a sufficiently longer shelf-life and at a competitive price. This brings them to the most promising approach to this end, the so-called biopreservation. This chapter provides a scientific background, functionality, as well as food applications and further commercial aspects of biopreservatives derived from microbial sources.

INTRODUCTION

The concept of biopreservation is not new to us, as we humans have continuously been using this biotechnological approach for preserving food, for many years, without even knowing the underlying mechanisms. In present world, the changing food trends, lifestyle and increasing consumer’s awareness has brought up the challenge to food producers to meet totally contradictory trends and demands (Table 1).

DOI: 10.4018/978-1-5225-5363-2.ch004
Overall, it has been seen that these trends and demands lead to food formulations that provide conditions much more favourable for microbial growth; milder processing results in minimal reduction, more processing steps increase the risk of contamination, more difficult to maintain longer shelf-life, and pressure to minimize the waste. Moreover, the trendsetters and consumers are not in favour to use conventional preservatives. But the fact is that we cannot meet the demands of growing population and maintain present society living standards, and certainly cannot reduce the global food waste problems, with food that is not preserved.

Normally, many consumers associate the term ‘Preservatives’ with harmful, modern chemicals in foodstuffs. But, as a brief look back into the past will show that there are possibilities to preserve the food by more natural means (such as, fermentation). Despite a number of misgivings, preservatives have nowadays become an indispensable part of the food we eat; due to increasing demand from consumers for greater choice, ease and convenience of foods, and high food safety standards. Thus, there is a strong market need for natural food preservation methods that can ensure both food safety (i.e. reduce the number and/or outgrowth of pathogenic microorganisms) and longer shelf-life (i.e. delayed development of the spoilage microflora). One of the few possible solutions is biopreservation based on the concept of using food-grade microorganisms (mainly, Lactic acid bacteria; LAB) as so-called cell factories (Figure 1).

Generally Regarded As Safe (GRAS)/Food-grade microorganisms can be exploited to a great extent for restricting microbial growth as promising means to preserve food. These mechanisms naturally exist to balance the complex microbial ecosystems. Thereby, the naturally occurring fittest microorganisms can be exploited to design preservation methodologies that ensure food safety and shelf life while keeping up the desired quality of the food product.

The biopreservation principles from food-grade microorganisms can be categorized according to the antimicrobial compound (e.g. bacteriocin, other metabolites, bacteriophages, enzymes) as well as product format (purified antimicrobial, fermentate, protective culture), as outlined in Figure 1 (Elsser-

<table>
<thead>
<tr>
<th>Preferences</th>
<th>Trends and Demands</th>
<th>Problems Associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health trends</td>
<td>Consumers concern for health has raised the demand for food products with reduced levels of salt, sugar and fat.</td>
<td>This also confers an increase in water activity, which provides a much suitable environment for microorganisms.</td>
</tr>
<tr>
<td>Taste preferences</td>
<td>In many products, trends are towards a milder (i.e. less acidic) taste.</td>
<td>This results in a higher pH that again is less adverse for microorganisms.</td>
</tr>
<tr>
<td>Perception of “natural”</td>
<td>Demand for milder or minimally processed foods (More natural/fresh food). Demand for “preservative-free” products.</td>
<td>Less inactivation of unwanted microorganisms.</td>
</tr>
<tr>
<td>Convenience trends (”practically homemade”)</td>
<td>Market access and economically viable logistics require a long shelf-life.</td>
<td>Two main risks associated with this trend—namely, more extensive processing, which results in more steps in which contamination with detrimental microorganisms can occur, and the need for proper handling by the consumer (e.g. sufficient heating), which may be neglected.</td>
</tr>
<tr>
<td>Durability and open shelf-life</td>
<td>Concerns such as corporate social responsibility, carbon dioxide (CO₂) footprint, and fair-trade and organic products put restrictions on which solutions a food producer can employ.</td>
<td>Furthermore, a sufficient open shelf-life is required to ensure customer loyalty.</td>
</tr>
</tbody>
</table>

| Ethical issues | Market access and economically viable logistics require a long shelf-life. | Concerns such as corporate social responsibility, carbon dioxide (CO₂) footprint, and fair-trade and organic products put restrictions on which solutions a food producer can employ. |

Table 1. Highlighting consumer’s preferences, changing food trends and demands, and problems associated with them
Related Content

An Integrated Approach Towards Developing Quality Mobile Health Apps for Cancer
www.igi-global.com/chapter/an-integrated-approach-towards-developing-quality-mobile-health-apps-for-cancer/219854?camid=4v1a

Bioactive Compound Analysis of Coriandrum Sativum L Against Microbial Keratitis
www.igi-global.com/chapter/bioactive-compound-analysis-of-coriandrum-sativum-l-against-microbial-keratitis/195774?camid=4v1a

Wavelet Packet Analysis of ECG Signals to Understand the Effect of Cannabis Abuse on Cardiac Electrophysiology of Indian Women Working in Paddy Fields

Researching the Use of Communication Technologies in Higher Education Institutions in Portugal
www.igi-global.com/chapter/researching-the-use-of-communication-technologies-in-higher-education-institutions-in-portugal/159767?camid=4v1a