Privacy-Preserving Hybrid K-Means

Zhiqiang Gao, Engineering University of PAP, Xian, China
Yixiao Sun, Department of Information Engineering, Official College of PAP, Chengdu, China
Xiaolong Cui, Engineering University of PAP, Xian, China
Yutao Wang, Department of Information Engineering, Engineering University of PAP, Xian, China
Yanyu Duan, Department of Information Engineering, Engineering University of PAP, Xian, China
Xu An Wang, Engineering University of PAP, Xian, China

ABSTRACT

This article describes how the most widely used clustering, k-means, is prone to fall into a local optimum. Notably, traditional clustering approaches are directly performed on private data and fail to cope with malicious attacks in massive data mining tasks against attackers’ arbitrary background knowledge. It would result in violation of individuals’ privacy, as well as leaks through system resources and clustering outputs. To address these issues, the authors propose an efficient privacy-preserving hybrid k-means under Spark. In the first stage, particle swarm optimization is executed in resilient distributed datasets to initiate the selection of clustering centroids in the k-means on Spark. In the second stage, k-means is executed on the condition that a privacy budget is set as ε/2t with Laplace noise added in each round of iterations. Extensive experimentation on public UCI data sets show that on the premise of guaranteeing utility of privacy data and scalability, their approach outperforms the state-of-the-art varieties of k-means by utilizing swarm intelligence and rigorous paradigms of differential privacy.

KEYWORDS

Clustering, Differential Privacy, Particle Swarm Optimization, Privacy Protection, Spark

1. INTRODUCTION

Nowadays, big data is ubiquitous and abundant as the booming growth of cloud computing and mobile Internet (Xia et al., 2016; Li, Taniar & Indrawan-Santiago, 2017). However, it poses a rising challenge on individuals’ raw data when data-mined or released by untrustworthy data analyzers. Individual privacy is always faced with threats from potential malicious attackers (Khan & Al-Yasiri, 2016; Sander, Teh & Sloka, 2017; Brocardo, Rolt, Dias, Custodio & Traore, 2017). Furthermore, with massive deployment of cloud computing and increasing demand of big data services, traditional data mining methods are in urgent requirement to be optimized and security-enhanced (Fu, Huang, Ren, Weng & Wang, 2017; Xiong et al., 2017). Consequently, privacy-preserving data mining (PPDM) as well as privacy-preserving data releasing (PPDR) have become extremely challenging problems. Overall, the research direction of privacy-preserving techniques can be illustrated in Table 1.

As the most commonly used clustering method, k-means (Lloyd, 1982; Yamada et al., 2017; Ma, 2017) has the prominent characteristics of fast convergence and low execution complexity. Since the
Table 1. Existing research direction of privacy-preserving techniques

<table>
<thead>
<tr>
<th>Direction</th>
<th>Paradigm</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPDR</td>
<td>k-anonymity (Sweeney, 2002), l-diversity (Machanavajjhala, Kifer, Gehrke & Venkitasubramaniam, 2007), t-closeness (Li, Li & Venkitasubramanian, 2007)</td>
<td>Based on background knowledge; Managed by a centralized data curator; Unable to provide strictly mathematical guarantee.</td>
</tr>
<tr>
<td>PPDM</td>
<td>Differential privacy (Dwork, McSherry, Nissim & Smith, 2006)</td>
<td>Strong privacy guarantee; Centralized and decentralized model.</td>
</tr>
<tr>
<td>SMC</td>
<td>(Samet & Miri, 2007; Miyajima et al., 2017)</td>
<td>Computation overheads; Strict limitation on involved parties.</td>
</tr>
<tr>
<td></td>
<td>Homomorphic encryption (Chen, 2015; Jain, Rasmussen & Sahai, 2017)</td>
<td>Computation overheads; Far from large-scaled production.</td>
</tr>
</tbody>
</table>

The proposal of PPDM, privacy-preserving k-means has attracted lots of attention from various fields. Specifically, Su et al. (2016) systematically investigated the concept of differential privacy data mining and proposed a composite k-means algorithm which integrates interactive and non-interactive methods. Ren et al. (2017) proposed a DPLK-means algorithm which improved the selection of the initial center points to each subset while the added noise reduced the performance of clustering. Additionally, regarding the modes of horizontal, vertical and arbitrary data storage, large amounts of privacy-preserving data mining schemes are specifically designed accordingly. Xing et al. (2017) provided a privacy preserving k-means containing two privacy-preserving algorithms without disclosing private information in clusters.

From another perspective, multiparty k-means is developed by conforming to such privacy-preserving protocols as secure multiparty computation (SMC) (Samet & Miri, 2007; Upmanyu, Nambodiri, Srinathan & Jawahar, 2010). Guided by SMC, multi-sourced data can be shared by several parties and each party independently produces k clusters securely. Meanwhile, all data are coordinated in a privacy-preserving manner. Doganay et al. (2008) studied the privacy of k-means clustering protocols and highlighted the situation where data is shared within two and more participants respectively. Miyajima et al. (2017) explored to combine reinforcement learning (RL) with SMC and proposed learning methods with SMC for RL. However, the most promising scheme of homomorphic encryption (Chen, 2015; Jain et al., 2017) is still immature and inevitably results in overwhelming computing expense. In a nutshell, early models of privacy-preserving k-means suffer from two non-trivial technical challenges of computation overheads and strict limitations on involved parties in SMC protocols.

As for the strong privacy guarantee, differential privacy is undoubtedly treated as the golden paradigm in both academic research and industry. Excitingly, differential privacy has witnessed the successful large-scaled applications in Google’s Chrome (Erlingsson, Pihur & Korolova, 2014), IOS 10 in WWDC2016 and CoreML in WWDC2017. In addition, studies on differential privacy can be classified into two main models: traditional one with a trustworthy data curator and most recently developed one in a local model (Nguyễn, 2016). In this paper, the entire work is emphasized by the trustworthy data curator model, that is, all data are managed by an honest-but-curious data curator and data-mined by analyzers through the differential privacy interface. As what have been reviewed from existing literature, the authors are the first to integrate PSO (particle swarm optimization) (Eberhart & Kennedy, 1995) in k-means with differential privacy on Spark platform. Overall, the contributions of this work can be summarized as follows:
Modeling Customer Behavior with Analytical Profiles
www.igi-global.com/chapter/modeling-customer-behavior-analytical-profiles/61518?camid=4v1a

Deductive Data Warehouses
Kornelije Rabuzin (2014). *International Journal of Data Warehousing and Mining* (pp. 16-31).
www.igi-global.com/article/deductive-data-warehouses/106860?camid=4v1a