The Effect of Education on Information Systems Success: Lessons from Human Resources

Richard J. Goeke, Widener University, Chester, USA
Kerri Anne Crowne, Widener University, Chester, USA
Dennis R. Laker, Widener University, Chester, USA

ABSTRACT

Research into the relationship between education and information systems (IS) success (use, satisfaction, and impact) has produced mixed results. Such results seem counterintuitive, given the many benefits that education brings to the workplace. However, workplace research from Human Resources (HR) has similarly found that education has little direct effect on job performance. Instead, education has indirect effects on job performance through job expertise, which is what drives behavior and job performance. The present research integrated the Delone & McLean IS Success Model with the Job Performance Model, and found similar results: in a survey of 465 professionals working in business analytics (BA), user education level had no direct effect on IS success (BA tool use, satisfaction, and impact). Instead, education level had a positive effect on expertise with the BA tool, which in turn positively affected BA tool use. These results build upon those from HR, and suggest that education has an indirect effect on IS success, rather than a direct effect.

KEYWORDS

Business Analytics, Education, Information Systems, Success

INTRODUCTION

Scholars have long held that differences among end-users affect information systems (IS) success (e.g., Agarwal & Prasad, 1999; Keen, 1981; Zmud, 1979). Though IS success is a multifaceted construct, commonly accepted success factors from the Delone & McLean IS Success Model (DeLone & McLean, 1992, 2003), such as use, satisfaction, and individual impact, will vary based on one or more user characteristics (Petter, DeLone, & McLean, 2013). For example, there is strong evidence that a user’s computer self-efficacy positively correlates with system use (Compeau & Higgins, 1995; Compeau, Higgins, & Huff, 1999; Taylor & Todd, 1995). However, despite the intuitive appeal that individual differences matter when it comes to IS success, some individual differences do not have the positive effects on IS success that researchers expect. For example, user education level has produced no consistent effect on IS use, satisfaction, and individual impact (Petter et al., 2013). These results seem to contradict conventional wisdom, because education not only increases one’s knowledge and skills, but also brings along a host of other benefits (e.g. problem-solving skills) that should positively affect IS success (Burton-Jones & Hubona, 2005; Igbaria, Guimaraes, & Davis, 1995; Mathieson, Peacock, & Chin, 2001).

DOI: 10.4018/IRMJ.2018070102

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
To clarify this relationship, we examined the workplace literature within Human Resources (HR), and found that education does not consistently have direct effects on job performance (Ng & Feldman, 2009). Instead, education is positively correlated with general mental ability (GMA or IQ) (Ceci, 1991; Ng & Feldman, 2009). According to the Job Performance Model (Schmidt, Hunter, & Outerbridge, 1986), GMA and job experience combine to build job expertise, and it is expertise that matters most when it comes to job performance (McDaniel, Schmidt, & Hunter, 1988; Schmidt et al., 1986; Schmidt, Hunter, Outerbridge, & Goff, 1988). Therefore, education (as a proxy for GMA) may have indirect effects on job performance, not direct effects.

The present research builds upon evidence from HR, by integrating the DeLone & McLean IS Success Model with the Job Performance Model, to examine whether education level has direct effects on IS success factors, or has indirect effects through expertise.

BACKGROUND AND HYPOTHESIS DEVELOPMENT

IS Success and User Education Level

One of the best-known frameworks for measuring IS success comes from DeLone and McLean (1992), whose original research model identified six interdependent dimensions of IS success: System Quality, Information Quality, Use, User Satisfaction, Individual Impact, and Organizational Impact. Since then, their original model has been updated by adding Service Quality as a first-order determinant (along with System Quality and Information Quality), and by combining Individual Impact and Organizational Impact into a new construct titled “Net Benefits” (DeLone & McLean, 2003). The DeLone and McLean IS Success Model (D&M Model) has been applied (in whole or in part) in a variety of IS research settings, and has generally found empirical support (e.g., Livari, 2005; Rai, Lang, & Welker, 2002). Attempts have been made, however, to further improve the model’s efficacy, by identifying factors (e.g. task, user, project, and organizational) that affect these success dimensions (Petter et al., 2013).

Individual differences among users is a research stream that has received much attention, because the success or failure of an IS depends greatly on the individuals using the system. Therefore, it’s plausible that certain user traits and characteristics may act as antecedents for IS success (Agarwal & Prasad, 1999; Keen, 1981). Towards this end, research has shown that certain individual differences do positively influence one or more IS success factors. In addition to the aforementioned computer self-efficacy, user trust (that the technology will benefit him/her) and user enjoyment (from using the system) produce consistently positive effects on IS use (or intent to use) and user satisfaction (Petter et al., 2013). Some user traits, however, have had ambiguous effects on IS success, and are not well understood.

One user trait that has puzzled researchers is the user’s education level, which has produced little direct effect on IS success (Petter et al., 2013). IS researchers have surmised that user education level should positively correlate with IS success, because higher levels of education should increase the user’s knowledge and technical skills (e.g., Agarwal & Prasad, 1999; Burton-Jones & Hubona, 2005; Mathieson et al., 2001). Obtaining higher levels of education should also improve analytical and problem-solving skills, which should improve users’ ability to work through problems, and thus make the IS more successful. However, researchers have been unable to find much of a connection between education and IS success, as shown in Table 1.

The fact that research has found little connection between education and IS success has implications for practice as well. Currently, analytics is one of the hottest fields in industry, which requires skills in data processing, data visualization, statistical analysis and data mining. McKinsey Global Institute has predicted a shortage of over 1.5 million managers and analysts with sufficient skills in analytics by 2018 (Manyika et al., 2011). U.S. colleges and universities have responded, with tremendous growth in undergraduate and especially graduate programs in analytics. However, if the connection between education and IS success (in this case analytics success) is feeble, then an enormous amount of time, money, and other resources may be wasted.
Evaluation of Determinants of Software Quality in Offshored Software Projects: Empirical Evidences From India

Software and Systems Engineering Integration
www.igi-global.com/chapter/software-systems-engineering-integration/14651?camid=4v1a

The Adoption of Network-Centric Data Sharing in Air Traffic Management