Chapter 13

Conceptualizing Experiential Learning for Computer–Mediated Engagement

Himanshu Joshi
Teachers College, Columbia University, USA

Dominic Mentor
Teachers College, Columbia University, USA

ABSTRACT

This chapter aims to equip readers with a conceptual understanding to help them leverage experience-based learning in electronic (e) and mobile (m) learning environments. We are in times where learning goals need to cater to increasingly complex scenarios that require non-didactic methods. Experiential learning emerges as a promising way to deliver such outcomes. David Kolb’s experiential learning model emerges as a popular model to conceptualize such learning. E-learning and m-learning cater to the needs of an increasingly mobile learner who seeks situated and personalized learning. There is a need to incorporate experiential features in e/m-learning in a workplace informed manner. The authors weave the learnings from a pilot research and from real world examples to conceptualize a model of experiential learning for e/m-learning environments. The purpose of the models is to help learners critically evaluate other learning applications in digital environments or even design their own.

INTRODUCTION

Computers and mobile technologies have revolutionized multiple aspects of life in the 21st century. Hardly any aspect of life is left untouched by technology, and more so now with the ubiquity of mobile phones. From virtually hailing a cab, ordering groceries, interpersonal communication, entertainment, to managing our exercise and health. No wonder that mobile and computer-based learning is finding increased application in education (Naismith, 2004) and continues to offer revolutionary learning opportunities in multiple environments (Mentor, 2018). Using technology, universities and workplaces across the world are incorporating technology based learning to enhance their reach to learners, irrespective of boundaries.
of time and geography. For profit companies like Coursera and Udacity offer Massively Open Online Courses (MOOCs), at times in partnerships with universities, and are looking at ways to disrupt the global education industry (Verger, Lubienski & Steiner-Khamsi, 2016). EdX founded by Massachusetts Institute of Technology (MIT) and Harvard in partnership with 90 universities and schools is also engaged in a similar pursuit through their offerings with free preview courses (Lazaroiu, Popescu, & Nica, 2016). Udemy, another player, claims more than 50,000 online courses on its platform where professors and instructors can design and offer courses at a rate of their own choosing (Epelboin, 2017; Gaebel, 2014; Täuscher & Kietzmann, 2017). Some claim that workers are increasingly adopting MOOCs as a route to further their professional development (Yuan, Powell & Cetis, 2013; Savino, 2014). Learning and development departments of workplaces across the globe are increasingly incorporating digital learning in order to provide on-demand, ongoing, self-directed learning aligned to the needs of rapidly changing workforce needs, often at lesser costs compared to face-to-face delivery models (KPMG: Wildi-Yune,J., Cordero, C. (2015), Deloitte: Pelster, Haims, Stempel & Vyver, 2016).

This chapter also acknowledges that many adult educators in schools and workplaces try to comprehend e/m- learning through models based in traditional education models. We believe that conceptualizing computer-mediated learning rooted in experiential learning, will be of great support to educators who are looking to embrace computer based learning from a lens they philosophically align with.

This chapter shows how computer-based learning is evolving beyond the conventional presentation of a static, mono-directional content approach. It also presents theories, research, as well as practical pedagogical and andragogical examples. The chapter will highlight that despite the evolution of mobile and eLearning, computer-based learning still needs to become more versatile in a multi-screen world.

Digital Learning a Norm Requiring Quality Informed by Educational Objectives

Online learning can take various forms. In its earliest forms, it started as converted correspondence courses (Ko, & Rossen, 2017) and others such as those delivered over the internet by for profit universities. Today, online learning is popular in the form of Massive Online Open Courses (MOOCs) and Small Private Online Courses (SPOCs) (Kaplan & Michael, 2016). According to data collected by Class-Central, a leading MOOC aggregator, over 700 universities across the world offered 6850 MOOCs in 2016 with 48.3 million users across the top five providers- Coursera, edX, XuetangX, FutureLearn and Udacity (Shah, 2016). This is over and above Small Private Online courses (SPOCs) delivered by universities and organizations over learning management systems (for example: Canvas, Moodle and Schoology to name but a few) for closed groups of learners in the form of stand-alone, blended and/or flipped learning programs (Bonk & Graham, 2006; Friesen, Norm, 2012) where learners can interact with course material before a course or class commences. Apart from computers, handheld computers, MP3 players, notebooks, mobile phones and tablets are also part of this learning revolution and are usually classified under m-learning (Trentin & Repetto, 2013). The terms online learning, digital learning and e-learning are used interchangeably in this chapter as the differences aren’t significant to the research in this chapter. M-learning is considered unique given the element interactivity based on form factors (Chen, Woolcott, & Sweller, 2017; Mentor, 2011; 2016). Thus, while m-learning falls under the same umbrella of online learning, but with full appreciation for its uniqueness.

However, there are also educators who are skeptical about technology aided learning because they believe it de-humanizes education, leads to excess stimulation, borders on entertainment, and comes at the cost of authentic and natural ways of learning (Buckingham, 2013; Okan, 2003; Selwyn, 2016).