ABSTRACT

This article discusses the idea that even though information systems development (ISD) approaches long have advocated the use of integrated organizational views, the modeling techniques used have not been adapted accordingly and remain focused on the automated information system (IS) solution. Existing research provides evidence that business process simulation (BPS) can be used at different points in the ISD process in order to provide better integrated organizational views that aid the design of appropriate IS solutions. Despite this fact, research in this area is not extensive, which suggests that the potential of using BPS for the ISD process is not yet well understood. The article uses the findings from three case studies in order to illustrate the ways that BPS has been used at different points in the ISD process. It compares the results against IS modeling techniques, highlighting the advantages and disadvantages that BPS has over the latter. The research necessary to develop appropriate BPS tools and give guidance on their use in the ISD process is discussed.

Keywords: BP and IS integration; business process simulation; IS evaluation; IS modeling; IS requirements gathering; IS requirements validation

INTRODUCTION

Early approaches to discipline ISD focused on treating it as a production process and gave rise to the linear, or waterfall, Systems Development Life Cycle (SDLC). This was perceived to have three advantages: (1) it follows a series of specific and sequential phases from the beginning of the project until its end; (2) it advocates the use of techniques and tools to formulate step by step the detailed design and to
implement the IS; and (3) it introduces the use of project management tools to control the overall process.

Despite the initial success of the linear SDLC, it did not deliver a dramatic reduction in the project failure rate, and a number of limitations was identified. For example, it is argued that instead of meeting organizational objectives, the traditional or linear SDLC aims to design an IS to help to solve low-level operational tasks (Avison & Fitzgerald, 2003). In addition, it is claimed that the traditional SDLC focuses on automating processes rather than proposing innovative integrated solutions (Rhodes, 1998). It is important to recognize that in parallel with the adoption of more rigorous ISD techniques, there also has been a progressive demand for IS to deal with more complex and wide-ranging business processes.

In trying to address some of these limitations, IS practitioners have proposed a wide range of alternative ISD approaches by emphasizing different aspects of the development process. For instance, some methodologies claim that organizational objectives can be met better by stressing the analysis of the organizational processes. Examples of these are structured analysis and design of IS (STRADIS), SSADM (OGC, 2000), and Yourdon Systems Method (YSM). Others, such as information engineering (IE), claim that organizational goals can be addressed better by placing more emphasis on the analysis of the data. Finally, there are approaches like Merise that consider both processes and data with equal importance (Vessey & Glass, 1998). Most of these approaches stress a scientific or functionalist approach by breaking up a complex system into its constituent parts. However, there are other approaches, like soft systems methodology (SSM) (Checkland & Scholes, 1999), that suggest that the properties of the whole system cannot be explained in terms of the properties of its constituent parts but can be understood better when looked at from a holistic perspective. A key issue is the dichotomy between methodologies, like SSM, that see the human actors and decision makers as part of the system and those that focus on the automated all programmed elements as the system. The former wider view introduces complex sociotechnological issues that are avoided in the latter narrower perspective.

Even though ISD approaches long have advocated the use of integrated organizational views, appropriate modeling techniques have not been adopted, and practice remains focused on the automated IS solution. For example, well-defined IS modeling techniques are available in order to understand the overall function of the system in question, to understand IS data structures, or to model the processes involved in the IS software (see Table 1). There is, however, very little indication of modeling techniques for examining organizational views that explicitly integrate automated software and human activities (Giaglis, Hlupic, Vreede, & Verbraeck, 2005).

In order to address this problem, it is proposed that Business Process Simulation (BPS) can be used at different points in the ISD process in order to better integrate the organizational views and thereby to aid the design of appropriate IS solutions. To this end, the article is structured in the following way. In order to illustrate the advantages of using BPS for the ISD process, section 2 describes the underlying principles behind BPS. In order to provide a reference point for this critique, sections 3 through 6 describe the objectives pursued in the
Related Content

Managing the Risk of Knowledge Transfer in Outsourcing Organizations
[www.igi-global.com/chapter/managing-risk-knowledge-transfer- outsourcing/42223?camid=4v1a](www.igi-global.com/chapter/managing-risk-knowledge-transfer-outsourcing/42223?camid=4v1a)

Effects of Reciprocal Investments and Relational Interaction in Deploying RFID Supply Chain Systems
[www.igi-global.com/article/effects-reciprocal-investments-relational-interaction/43734?camid=4v1a](www.igi-global.com/article/effects-reciprocal-investments-relational-interaction/43734?camid=4v1a)

E-Business and ERP: A Conceptual Framework toward the Business Transformation to an Integrated E-Supply Chain
[www.igi-global.com/article/business-erp-conceptual-framework-toward/49138?camid=4v1a](www.igi-global.com/article/business-erp-conceptual-framework-toward/49138?camid=4v1a)
Preparedness of Small and Medium-Sized Enterprises to Use Information and Communication Technology as a Strategic Tool


www.igi-global.com/chapter/preparedness-small-medium-sized-enterprises/48630?camid=4v1a