Chapter 1
Biomedical Image Processing Software Development for Shoulder Arthroplasty

Majid Mohammad Sadeghi
Istanbul Technical University, Turkey

Emin Faruk Kececi
Istanbul Technical University, Turkey

Kerem Bilsel
Bezmialem Vakif University, Turkey

Ayse Aralasmak
Bezmialem Vakif University, Turkey

ABSTRACT

Shoulder arthroplasty is an important operation for the treatment of shoulder joints, with an increasing rate of operations per year around the world. Although this operation is generally achieved successfully, there are a number of complications which increase the risks in the operation. Preoperative planning for a surgery can help reduce the amount of risks resulting from complications and increase the success rate of the operation. Three-dimensional visualization software can be helpful in preoperative planning. This chapter aims to provide such software to help reduce the risks of the operation by visualizing 3D joint anatomy of the specific patient for the surgeon, and letting surgeons observe the geometrical properties of the joint.

DOI: 10.4018/978-1-5225-5876-7.ch001

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
INTRODUCTION

Shoulder arthroplasty is a shoulder joint replacement surgery, performed when pain prevails or shoulder joint functionality including strength or mobility has deteriorated or has been lost and conservative treatments like analgesics and physiotherapy are not affective (Buck, Jost, & Hodler, 2008).

A great number of shoulder arthroplasty is performed every year around the world. There were 200,000 shoulder arthroplasty surgeries in the USA from 2000 to 2010 (Trofa, Rajaee, & Smith, 2014) and the number of operations performed is increasing (Kim, Wise, Zhang, & Szabo, 2011). In Australia, 37,849 shoulder arthroplasty operations were performed from 2006 to 2016 (“Reported Shoulder Procedures,” 2017).

Common issues which can result in shoulder arthroplasty include osteoarthritis, rheumatoid arthritis, complex fractures of the proximal humerus and osteonecrosis of the humeral head. Shoulder arthroplasty is performed also as revisions of failed prosthesis (Buck et al., 2008).

Shoulder arthroplasty operations include humeral hemiarthroplasty, total shoulder arthroplasty, and reverse shoulder arthroplasty (Buck et al., 2008). Humeral hemiarthroplasty is replacing the humeral head with an artificial implant in the joint. Total shoulder arthroplasty is performed by replacing both humeral head and glenoid section of the scapula bone. Major indications for total shoulder arthroplasty are primary and secondary osteoarthritis, as well as early rheumatoid arthritis (Buck et al., 2008). In reverse shoulder arthroplasty, the anatomy of the joint is reversed in a way that the prostheses attached to the glenoid has a ball shape, and the prostheses attached to the humeral bone has a concave shape. Reverse shoulder arthroplasty has been proved as a successful method for treatment in cases with rotator cuff deficiency (Boileau, Watkinson, Hatzidakis, & Hovorka, 2006; Boileau, Watkinson, Hatzidakis, & Balg, 2005).

In Reverse shoulder arthroplasty, medialization and distalisation in the shoulder joint, meaning that the center of rotation is moved downwards and closer to the body, prevents the shoulder from moving upward out of its center and also it increases the force moment that the deltoid muscle can create. As a result, lifting of the arm is improved which is the advantage of this method over previous types of shoulder arthroplasty in many cases (Farshad & Gerber, 2010).

Shoulder arthroplasty is generally achieved successfully, although complications can occur. The number of complications reported varies based on the reporting institution (Hammond, Queale, Kim, & McFarland, 2003; Hasan, Leith, Smith, & Matsen, 2003), however, a meta-analysis has reported a 14.7% rate of complication in a total of 2,810 shoulder arthroplasty operations from 1996 to 2005. The most frequent complication was component loosening (with a higher glenoid loosening
20 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage:

www.igi-global.com/chapter/biomedical-image-processing-software-development-for-shoulder-arthroplasty/210911?camid=4v1

This title is available in Advances in Medical Technologies and Clinical Practice, InfoSci-Books, Communications, Social Science, and Healthcare, InfoSci-Medical, Healthcare, and Life Sciences, InfoSci-Social Sciences and Humanities, InfoSci-Select, InfoSci-Select. Recommend this product to your librarian:

www.igi-global.com/e-resources/library-recommendation/?id=103

Related Content

Feature Extraction
www.igi-global.com/chapter/feature-extraction/205178?camid=4v1a

Neuromarketing Perspective of Consumer Choice
www.igi-global.com/chapter/neuromarketing-perspective-of-consumer-choice/199641?camid=4v1a
Healthcare Computer Reasoning Addressing Chronically Ill Societies Using IoT: Deep Learning AI to the Rescue of Home-Based Healthcare
David Mendes, Manuel Lopes, Artur Romão and Irene Pimenta Rodrigues (2019). *Chronic Illness and Long-Term Care: Breakthroughs in Research and Practice* (pp. 720-736).
[www.igi-global.com/chapter/healthcare-computer-reasoning-addressing-chronically-ill-societies-using-iot/213378?camid=4v1a](www.igi-global.com/chapter/healthcare-computer-reasoning-addressing-chronically-ill-societies-using-iot/213378?camid=4v1a)

Engaging Patients and Lowering Costs: Technology to the Rescue
[www.igi-global.com/chapter/engaging-patients-and-lowering-costs/158989?camid=4v1a](www.igi-global.com/chapter/engaging-patients-and-lowering-costs/158989?camid=4v1a)