Development of Interactive Multimedia Learning Materials for Improving Critical Thinking Skills

Djusmaini Djamas, Universitas Negeri Padang, Padang, Indonesia
Vonny Tinedi, Universitas Negeri Padang, Padang, Indonesia
Yohandri, Universitas Negeri Padang, Padang, Indonesia

ABSTRACT

Learning materials offer students and teachers valuable assistance in physics lessons. This article was aimed at developing and evaluating interactive multimedia learning materials that are equipped with games in Linear Motion and Newton’s Laws for improving critical thinking skills. The evaluation consists of an expert review, based on grades from four experts, practicality testing by 30 students, and effectiveness testing concerning students’ critical thinking skills after they have used interactive multimedia learning materials. Thus, the research result shows that interactive multimedia learning materials are valid, practical, and effective. Based on this result, it appears that interactive multimedia learning materials can enhance students’ critical thinking skills.

KEYWORDS

Critical Thinking Skills, Games, Interactive Multimedia, Learning Materials, Physics Learning

1. INTRODUCTION

Education has not been able to develop at the same pace that current technology develops. Today, rapid technological developments have caused students to become addicted, making them unable to separate from their gadgets for long periods of time. In addition, when students are addicted to technology, they can have a greater preference for their gadgets than their textbooks. Based on students’ behavior, it becomes clear who feels more comfortable when their books are left behind. In contrast, students can feel uncomfortable when their gadgets are left behind. For further evidence of students’ addiction to technology, one can observe their level of interest in games, which is quite high, as evidenced by the students’ frequent game playing outside of class. Based on a survey of 33 students, 43 percent indicated they often play games outside of class, which says that, instead of studying, students are using more of their leisure time to play games. Therefore, physics learning objectives will be difficult to achieve.

Based on Indonesia’s 2013 curriculum, one of the physics learning objectives is to develop reasoning in inductive and deductive analysis to solve problems (Sunardi & Zenab, 2014). This objective shows that the 2013 curriculum emphasizes the development of students’ critical thinking

DOI: 10.4018/IJICTE.2018100105

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
skills. Despite this, in Padang, the result of students’ critical thinking skills measurement using the CCTST (California Critical Thinking Skill Test) showed that students’ scores in each indicator is only 20-30 percent of an ideal score (Djamas, 2016).

To improve students’ critical thinking skills, one effort can be made: using games in learning (Arifin, Akhdinirwanto, & Fatmaryanti, 2013; Frasca, 2001). Furthermore, Amory’s (1999) research showed playing and learning are closely related. Students experience a pleasant sensation that is caused by educational games that can enhance learning effectiveness. Games can include three fun elements: fantasy, curiosity, and challenge. Computer games enhanced learning through visualization, experimentation, and creativity when playing; and when problem-solving is included, games can improve critical thinking skills (Amory, Naicker, Vincent, & Adams, 1999).

In addition to using games in learning, use of interactive multimedia can improve critical thinking skills. Interactive multimedia is reader-centered, enabling students to play an active role in deciding the way they learn (Bass, 2014), which can improve students’ critical thinking skills (Ramanujam, 2010). Therefore, the aim of this research was to develop and evaluate interactive multimedia learning materials that are equipped with games for improving critical thinking skills.

2. LITERATURE REVIEW

2.1. Interactive Multimedia Learning Materials

Interactive multimedia learning materials combine various media, i.e., text, image, sound, video, animation, and simulation, and students can control the way they use them (Prastowo, 2011). Additionally, they can give students feedback, making students actively involved in learning. Although concepts in physics are abstract, animation and simulation of various phenomena and cases that are near students’ daily lives can make them concrete for students to understand. In addition, videos in interactive multimedia learning materials can explain physics concepts that are poorly understood by students, enabling students to learn independently.

The interactive multimedia learning materials that were developed consist of a handout and student worksheet. The structure of the handout consists of Core Competencies (CC), Basic Competencies (BC), a description of lesson materials, questions, and references (Prastowo, 2011). The student worksheet consists of a lesson topic, class, semester, lesson guide, CC, BC, lesson indicators, lesson objectives, information about lesson materials, tools/materials that are needed in the lesson, procedures, and tasks or discussion materials (Prastowo, 2011).

Moreover, the discovery learning model was used as learning steps in interactive multimedia learning materials. In this learning model, students use a given problem and work independently to identify the physics concept and understand the related principle. In addition, since the problem-solving process requires critical thinking, it can improve critical thinking skills. Furthermore, this learning model is student-centered, which can help students be more active, critical, creative, independent, and responsible in their learning.

2.2. Games

A game is a system in which a player is involved in artificial conflict, governed by rules, and provided countable results. In addition, since enjoyment is a factor in playing games, a player is compelled to play and desire to play the games (Salen & Zimmerman, 2004). In learning, if students only receive learning materials that are not used in other activities, then learning will not be meaningful for them. Furthermore, since students cannot measure their comprehension after a lesson, a game is needed to complement the lesson, directly providing students with learning experiences in a fun way. Thus, games developed for education must have conflict, rules and objectives, the ability to provide feedback, and at the end of a game, the player must see a success grade (Prensky, 2001).
Computer-Based Simulation in Blended Learning Curriculum for Hazardous Waste Site Worker Health and Safety Training
www.igi-global.com/article/computer-based-simulation-blended-learning/2366?camid=4v1a

Industry-University Collaborations in Research for Information Systems: An Exploratory Study of a Management Model
Tom O’Kane (2007). *Information Systems and Technology Education: From the University to the Workplace* (pp. 279-298).
www.igi-global.com/chapter/industry-university-collaborations-research-information/23403?camid=4v1a