ABSTRACT

The human face plays a central role in most forms of natural human interaction so we may expect that computational methods for analysis of facial information, modeling of internal emotional states, and methods for graphical synthesis of faces and facial expressions will play a growing role in human-computer and human-robot interaction. However, certain areas of face-based HCI, such as facial expression recognition and robotic facial display have lagged others, such as eye-gaze tracking, facial recognition, and conversational characters. Our goal in this paper is to review the situation in HCI with regards to the human face, and to discuss strategies, which could bring more slowly developing areas up to speed. In particular, we are proposing the “The Art of the Soluble” as a strategy forward and provide examples that successfully applied this strategy.

INTRODUCTION

The human face is used in many aspects of verbal and non-verbal communication: speech, the facial expression of emotions, gestures such as nods, winks, and other human communicative acts. Subfields of neuroscience, cognitive science, and psychology are devoted to study of this information. Computer scientists and engineers have worked on the face in graphics, animation, computer vision, and pattern recognition. A widely stated motivation for this work is to improve hu-
Facial Expression Analysis, Modeling and Synthesis

This area can be viewed as a successful sub-field related to face-based HCI.

Numerous studies have emphasized the neglect of human affect in interface design and argued this could have major impact on the human aspects of computing (Picard, 1997). Accordingly, there has been much effort in the pattern recognition, AI, and robotics communities towards the analysis, understanding, and synthesis of emotion and expression. In the following sections we briefly introduce the areas related to analysis, modeling and synthesis of facial expressions. Next, we report on insights on these areas gained during a workshop we organized on the topic. A gap between the available FP technology and its envisioned applications was identified, and based on this insight, we propose the “Art of the Soluble” strategy for FP. Last, we provide successful examples in the field of FP that took the Art of the Soluble approach.

ANALYSIS: FACIAL EXPRESSION CLASSIFICATION

The attractive prospect of being able to gain insight into a user’s affective state may be considered one of the key unsolved problems in HCI. It is known that it is difficult to measure the “valence” component of affective state, as compared to “arousal”, which may be gauged using biosensors. However, a smile, or frown, provides a clue that goes beyond physiological measurements. It is also attractive that expressions can be guaged non-invasively with inexpensive video cameras.

Automatic analysis of video data displaying facial expressions has become a topic of active area of computer vision and pattern recognition research (for reviews see (Fasel & Luettin, 2003; Pantic & Rothkrantz, 2000)). The scope of the problem statement has, however, been relatively narrow (Ellis & Bryson, 2005; Hara & Kobayashi, 1996; Shugrina, Betke, & Colomosse, 2006). Typically one measures the performance of a...
20 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage:
www.igi-global.com/chapter/facial-expression-analysis-modeling-synthesis/21501?camid=4v1

www.igi-global.com/e-resources/library-recommendation/?id=1

Related Content

Stylus-Based Tele-Touch System using a Surface Acoustic Wave Tactile Display
www.igi-global.com/article/stylus-based-tele-touch-system/74809?camid=4v1a

Collision Avoidance in Dynamic Environment by Estimation of Velocity and Location of Object by Robot using Parallax

Cyborgization: Pros and Cons
www.igi-global.com/chapter/cyborgization/189299?camid=4v1a

IoT in Education: A Future of Sustainable Learning
www.igi-global.com/chapter/iot-in-education/237292?camid=4v1a