Chapter 17

Eliciting Pre-Service Secondary Mathematics Teachers’ Technological Pedagogical Function Knowledge

Jennifer N. Lovett
Middle Tennessee State University, USA

Lara K. Dick
Bucknell University, USA

Allison W. McCulloch
University of North Carolina at Charlotte, USA

Cyndi Edgington
North Carolina State University, USA

Cecilia Anne Wanner
Middle Tennessee State University, USA

Milan F. Sherman
Drake University, USA

Samuel D. Reed
Middle Tennessee State University, USA

ABSTRACT

The purpose of this study was to examine the evidence of technological pedagogical function knowledge that preservice secondary mathematics teachers (PSMTs) exhibited through engaging in a module in which they examine artifacts of students’ mathematical thinking with technology. Three cases are presented to describe the evidence of technological pedagogical function knowledge that was elicited through engagement with the module. Findings show that the module was successful in eliciting PSMTs’ function knowledge, technological function knowledge, and technological pedagogical function knowledge. Differences in the manners in which these knowledges were elicited are discussed and implications for teachers of PSMTs are shared.

DOI: 10.4018/978-1-5225-7001-1.ch017
INTRODUCTION

Digital technologies have unarguably impacted current trends in education. Many researchers and scholars challenge that an immediate concern for education is that of developing teachers’ knowledge for infusing technology as learning tools (Mishra & Koehler, 2006; Niess, 2005). National organizations focused on mathematics education, including the National Council of Teachers of Mathematics (NCTM) and the Association of Mathematics Teacher Educators (AMTE), have echoed this call for enhanced preparation of pre-service secondary mathematics teachers’ Technological Pedagogical Content Knowledge (TPACK) (Mishra & Koehler, 2006; Niess, 2005). AMTE’s (2017) Standards for Preparing Teachers of Mathematics states that:

well-prepared beginning teachers of mathematics are proficient with tools and technology designed to support mathematical reasoning and sense making, both in doing mathematics themselves and in supporting student learning of mathematics. (p. 11)

NCTM’s (2014) Principles to Action further elaborates that teachers “need to develop deep understandings of how technology and tools can be used to investigate mathematical ideas... they need to reflect on how their students might use these tools” (p. 28).

To better prepare future teachers to teach with technology, an Examining Students’ Technological Mathematical Practice module was developed for pre-service secondary mathematics teachers (PSMTs). The mathematical topic of focus was the concept of function because research shows technology can be effective when developing the function concept (e.g., Dick & Hollebrands, 2011) and because PSMTs often struggle with developing a deep understanding of function (Cooney, Beckmann, & Lloyd, 2010). The module consisted of activities in which PSMTs first examined their own understanding of the function concept through engaging with an online applet and then investigated students’ mathematical thinking with technology through the examination of artifacts of middle school students (henceforth referred to as students) engaging with a similar applet. The purpose of this study was to examine the ways in which the module elicited different aspects of the PSMTs’ TPACK of function and to answer the following research question: What evidence of TPACK do PSMTs exhibit as a result of engaging in a module in which they examine artifacts of students’ mathematical thinking with technology?

BACKGROUND

This section begins with a short review of previous research on PSMTs’ TPACK. Then the section provides previous research on analyzing students’ mathematical work. Finally, the section provides the study’s focus on the function concept and the theoretical framework.

TPACK

Within teacher education, many have built upon Shulman’s (1986) idea of teachers’ pedagogical content knowledge (PCK). PCK laid the foundation for Grossman’s (1989, 1990) identification of specific constructs within PCK, Even’s (1990) work on the essential features of subject matter knowledge in mathematics, and Ball and colleagues’ work on the components of mathematical knowledge for teaching
23 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage: www.igi-global.com/chapter/eliciting-pre-service-secondary-mathematics-teachers-technological-pedagogical-function-knowledge/215511?camid=4v1

Related Content

Edu-ACoCM: Automatic Co-existing Concept Mining from Educational Content
www.igi-global.com/article/edu-acocm/236072?camid=4v1a

Staff Reflections on Using E-Assessment Feedback in the Digital Age
www.igi-global.com/chapter/staff-reflections-on-using-e-assessment-feedback-in-the-digital-age/212292?camid=4v1a

Effect of Computer Assisted Instructional Package on Students’ Learning Outcomes in Basic Science
www.igi-global.com/article/effect-of-computer-assisted-instructional-package-on-students-learning-outcomes-in-basic-science/236071?camid=4v1a

Mobile Technologies for Making Meaning in Education: Using Augmented Reality to Connect Learning
Teresa L. Coffman and Mary Beth Klinger (2019). Mobile Technologies in Educational Organizations (pp. 64-84).
www.igi-global.com/chapter/mobile-technologies-for-making-meaning-in-education/227222?camid=4v1a