Chapter 7
When Things Fall Apart: Global Weirding, Postnormal Times, and Complexity Limits

Christopher Burr Jones
Walden University, USA

ABSTRACT
The chapter addresses the challenges facing first responders and public administrators due to accelerated warming, global weirding, and the limits to complexity. Similarly, these same challenges are also likely to have an impact on the ability of governments, international organizations, and non-governmental organizations to implement and realize the sustainable development goals and their 169 targets. The chapter focuses on the state of critical infrastructure, primarily in the USA, and the maintenance and sustainability of the physical systems of energy distribution, transportation, communication, and other basic services that support economic development and social systems. The chapter posits the need to explore these themes through the lens of futures studies and the need to envision and create preferred futures.

INTRODUCTION
This chapter was initially conceived as a provocation, a thought experiment, for public administrators to consider the benefits and hazards of considering worst-case scenarios for the future. The original presentation, given at the 2018 annual meeting of the American Society for Public Administration (ASPA), addressed preferred, sustainable futures and the implementation of the Sustainable Development Goals (SDGs) as strategies to help avoid a major societal collapse or build bridges to

DOI: 10.4018/978-1-5225-7727-0.ch007

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
post-industrial civilization. The researcher’s rationale for bringing these issues to ASPA was that, given the times that we live in, public administrators are arguably already among the most likely to deal with the consequences civilizational decline and collapse, with increased attention on the evidence of such decline, such as terrorism and mass shootings, extreme weather events, and increasing chaos in society generally. The questions that the researcher raised for public administrators are no less relevant for broader consideration of the implementation of the SDGs: those people who will implement them are political leaders, public administrators, safety and security agencies, international organizations, nongovernmental organizations, and civil society actors.

BACKGROUND

Broadly, this chapter explores the tension between the forces of positive evolution of our species and planet and the entropic forces of chaos and uncertainty. It draws on the work of futures studies and assessments of the state of play in the building, maintenance, and stability of physical infrastructure. Infrastructure is a key indicator of social commitment to economic and social development in the medium-term future, so it has emerged as a concern in the research literature (American Society of Civil Engineers [ASCE], 2017; Kemp 2017; Marcuson, 2008; Zimmerman, 2009) and it’s resilience in the face of climate change (Katz, 2017; Rapaport et al., 2015; Repetto & Easton, 2010). With some few exceptions, futurists have been reluctant to consider the consequences of broader societal collapse (Gidley, 2017; Slaughter, 2004, 2010). While there may be resistance to take a doom and gloom view, it may be time to consider some of the broader consequences of Decline and Collapse futures, if as some have argued, we have passed a tipping point in the Earth’s carrying capacity (Caton, 1982; Kolbert, 2014). But I argue that threats to civilization need to be considered in a broader context, not as an acceptance of doom and gloom, but as part of a transition to a desirable, sustainable future. The challenge may be to envision and realize wise, ethical, and good futures particularly in the face of pessimism about growing environmental degradation (Lombardo, 2017).

One central driving force in global weirding is the accelerating warming of the Earth’s atmosphere, which may continue to rise until it reaches a new state of dynamic thermal equilibrium, as suggested in Lovelock’s (1995, 2009a, 2009b) Gaia theory. The approach of this paper is informed by the futures studies tradition, particularly the alternative futures typologies, i.e., the Four Futures, of Dator (2009a), and shares many of the other assumptions of academic future studies (Bell, 1997; Dator, 1995; Gidley, 2017).
Designing of E-learning for Engineering Education in Developing Countries: Key Issues and Success Factors
www.igi-global.com/chapter/designing-learning-engineering-education-developing/44723?camid=4v1a

www.igi-global.com/chapter/what-makes-them-stay-and-go/127458?camid=4v1a