INTRODUCTION

Nowadays, we are experiencing an increasing use of mobile and embedded devices. These devices, aided by the emergence of new wireless technologies and software paradigms, among other technological conquests, are providing means to accomplish the vision of a new era in computer science. In this vision, the way we create and use computational systems changes drastically for a model where computers lose their “computer appearance.” Their sizes were reduced, cables were substituted by wireless connections, and they are becoming part of everyday objects, such as clothes, automobiles, and domestic equipments.

Initially called ubiquitous computing, this paradigm of computation is also known as pervasive computing (Weiser, 1991). It is mainly characterized by the use of portable devices that interact with other portable devices and resources from wired networks to offer personalized services to the users. While leveraging pervasive computing, these portable devices also bring new challenges to the research in this area. The major problems arise from the limitations of the devices.

At the same time that pervasive computing was attaining space within the research community, the field of grid computing (Foster, Kesselman, & Tuecke, 2001) was also gaining visibility and growing in maturity and importance. More than
just a low cost platform for high performance computing, grid computing emerges as a solution for virtualization and sharing of computational resources.

In the context of virtual organizations, both grid and pervasive computing assemble a number of features that are quite desirable for several scenarios within this field, notably the exchanging of information and computational resources among environments and organizations. The features of these technologies are enabling system designers to provide newer and enhanced kinds of services within different contexts, such as industry, marketing, commerce, education, businesses, and convenience. Furthermore, as time goes on, researchers have made attempts of extracting and incorporating the better of the two technologies, thus fostering the evolution of existing solutions and the development of new applications. On the one hand, pervasive computing researchers are essentially interested in using wired grids to hide the limitations of mobile devices. On the other hand, grid computing researchers are broadening the diversity of resources adhered to the grid by incorporating mobile devices.

This chapter presents part of our experiences in the research of both pervasive and grid computing. We start with an overview about grid and pervasive technologies. Following, there are described and discussed approaches for combining pervasive and grid computing. These approaches are presented from both perspectives of grid and pervasive computing research. Finally, in the last section, there are presented our criticisms about the approaches discussed and our hopes about the future steps for this blend of technologies.

GRID AND PERVERSIVE COMPUTING

Grid computing (in short grids) was born as a low cost alternative for high performance computing, rapidly evolving to a solution for virtualization and sharing of resources. By spreading workload across a large number of computers, users take advantage of enormous computational resources that would otherwise be prohibitively expensive to attain with supercomputers. To day, grids try to leverage a world where the access to any computational resources across sites is standardized, ubiquitous and reliable.

Grids are characterized by the use of heterogeneous and non-dedicated resources, scattered under different administrative domains and linked through low-bandwidth channels. There are no guarantees neither whether a certain resource will be available at a certain moment nor, once available, it will keep available during any interval of time. Due to these features, grids are best suited for applications that can adapt themselves to deal with intermittent resources.

More recently, grids are going towards defining a service-oriented architecture, OGSA\(^1\), where resources are advertised and used as services. OGSA extends traditional service-oriented architectures by the standardization of a number of helper services, concerned with the maintenance of the whole infrastructure. Such services include load balancing, QoS\(^2\) assurance, redundancy of services, and so forth.

Pervasive computing is also a kind of distributed computing. The general vision is that computation is embedded in objects of everyday life, such as clothes, rooms, automobiles and domestic devices. These objects and environments collaborate on behalf of people, balancing proactivity, context information and pre-known information about users’ profiles to provide personalized services to users, on the right place and on the right moment.

Pervasive computing materializes in the form of smart spaces. These environments are characterized by collaboration between embedded devices, wired infrastructure and users. Normally, users interact with smart spaces through portable devices. These devices carry information about
Related Content

Local Search Applications and Urban Public Space: Interfacing Networked Individualism and Tangible Urbanism
[www.igi-global.com/article/local-search-applications-and-urban-public-space/114590?camid=4v1a](www.igi-global.com/article/local-search-applications-and-urban-public-space/114590?camid=4v1a)

[www.igi-global.com/article/gender-wage-differentials-information-systems/50532?camid=4v1a](www.igi-global.com/article/gender-wage-differentials-information-systems/50532?camid=4v1a)

Designing Ubiquitous Content for Daily Lifestyle
[www.igi-global.com/article/designing-ubiquitous-content-daily-lifestyle/2935?camid=4v1a](www.igi-global.com/article/designing-ubiquitous-content-daily-lifestyle/2935?camid=4v1a)

Automatic Language Translation for Mobile SMS
[www.igi-global.com/article/automatic-language-translation-mobilesms/41723?camid=4v1a](www.igi-global.com/article/automatic-language-translation-mobilesms/41723?camid=4v1a)