Chapter VII

Intelligent Software Agents in Electronic Commerce: A Socio-Technical Perspective

Mahesh S. Raisinghani, University of Dallas, USA
Christopher Klassen, The Software Construction Company, USA
Lawrence L. Schkade, University of Texas, USA

“The future business culture will be one in which innovation is necessary, learning is constant, organizations need to act collaboratively and work is its own reward...It will not be business. It will not be government. It is the social sector that may yet save the society.” ——Peter F. Drucker

INTRODUCTION

Although there is no firm consensus on what constitutes an intelligent agent (or software agent), an intelligent agent, when a new task is delegated by the user, should determine precisely what its goal is, evaluate how the goal can be reached in an effective manner, and perform the necessary actions by learning from past experience and responding to unforeseen situations with its adaptive, self-starting, and temporal continuous reasoning strategies. It needs to be not only cooperative and mobile in order to perform its tasks by interacting with other agents but also reactive and autonomous to sense the status quo and act independently to make progress towards its goal (Baek et al., 1999; Wang, 1999). Software agents are goal-directed and possess abilities such as autonomy, collaborative behavior, and inferential capability. Intelligent agents can take different forms, but an intelligent agent can initiate and make decisions without human intervention and have the capability to infer appropriate high-level goals from user actions and requests and take actions to achieve these goals (Huang, 1999; Nardi et al., 1998; Wang, 1999). The intelligent software agent is a computational entity that can adapt to the environment, making it capable of interacting with other agents and transporting itself across different systems in a network. “...The state of the running program is saved, transported to the new host, and restored, allowing the program to continue where it left off” (Kotz and Gray, 1999).
THE CURRENT STATE OF RESEARCH ON SOFTWARE AGENTS

Software agents were first used several years ago to automate repetitive behavior in simple tasks such as filtering and sorting information or making basic price comparisons (Maes et al., 1999; Kirsner, 1999). This first phase of software agents has been superceded by sophisticated software agents that keep a detailed profile of demographics and psychographics. They can track interests and preferences in order to offer customized services in business-to-business, business-to-consumer, and consumer-to-consumer e-commerce based on some embedded mobility metadata (Maes, 1999; Wong et al., 1999).

In automated negotiation in retail, e-commerce, electricity markets, manufacturing planning and scheduling, distributed vehicle routing among independent dispatch centers, and electronic trading of financial instruments, computational agents find and prepare contracts on behalf of the real world parties they represent (Sandholm, 1999). Gloshko et al. (1999) believe that over time, most merchant web sites will provide agent-searchable catalogs that supply product descriptions and information about price and availability. The stage is set for applications that can benefit from the mobile agent paradigm, such as personal assistance by monitoring and notifying/information dissemination, secure brokering, distributed information retrieval, telecommunication networks services, and workflow applications, and parallel processing (Lange and Oshima, 1999; Hauk and Chen, 1999).

Much research and many articles have been devoted to this topic, and software products billed as having intelligent agent functionality are being introduced on the market every day. The articles and research, however, do not whole-heartedly endorse this trend. A growing number of computer information professionals recognize that there are certain problems and issues surrounding intelligent agent terminology and technology that must be resolved if agent technology is to continue to develop and mature.

The current research into intelligent agent software technology can be divided into two main areas: technological and social. The latter area is particularly important since, in the excitement of new and emergent technology, people often forget to examine what impact the new technology will have on people’s lives. In fact, the social dimension of all technology is the driving force and most important consideration of technology itself. Technology is not created and produced for its own sake, but to improve people’s lives. Technology and computers and software are not created simply to see what the human mind can achieve, they are created for the sake of human beings.

TECHNOLOGICAL ISSUES

The first and most fundamental technological aspect that must be considered is what constitutes an intelligent software agent: What is the definition of an intelligent software agent? It is here that the first major problem for intelligent agent technology emerges. “In order for this term [intelligent agent] to have any effectiveness, there must first be a universal definition that can be agreed upon and used consistently” (Vinaja and Sircar, 1999, p. 478). Unfortunately, though, there is in fact no commonly agreed upon definition of an intelligent agent or even an (software) agent. Many proposals for a formal definition of “intelligent agent” have been made, but none has been widely accepted (Franklin and Graesser, 1996, p. 3). The following are a few of the more promising definitions:

“An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through effectors” (Russell and Norvig, 1995, p. 33).
Related Content

Gender Differences in Information Technology Acceptance
[Link](www.igi-global.com/chapter/gender-differences-information-technology-acceptance/22385?camid=4v1a)

End User Support Usage
[Link](www.igi-global.com/chapter/end-user-support-usage/6934?camid=4v1a)

Performance Mapping and Gap Analysis: A Sustainable Evidence-Based Process for Driving Real Results
Bonnie Beresford and Milica Vincent (2020). Teaching Cases Collection (pp. 1-24).
[Link](www.igi-global.com/chapter/performance-mapping-and-gap-analysis/234171?camid=4v1a)
Long-Term Mobile Phone Use Leads to Brain Tumors
[www.igi-global.com/chapter/long-term-mobile-phone-use-leads-to-brain-tumors/130179?camid=4v1a](www.igi-global.com/chapter/long-term-mobile-phone-use-leads-to-brain-tumors/130179?camid=4v1a)