Deepening Engagement: The Intimate Flow of Online Interactions

Anita Chadha, University of Houston, Downtown, Houston, USA

ABSTRACT

Peer interaction in the online classroom boosts academic progression and engages students in deeper learning. This study assesses several different forms of student peer interactions on a collaborative website in an American politics course offered across two universities. Findings reveal that students identify and personalize their interactions with each other while employing deeper learning, a measure of their reflective discussions using academic content across the universities. This study concludes that a peer interactive design is an effective online teaching method to expand student learning, one that engages students with each other while deepening their learning.

KEYWORDS

Academic Reflectivity, Across Universities, Deepening Engagement, Deeper Learning, Online Education, Online Learning, Online Pedagogy, Reflectivity

INTRODUCTION

Student-to-student interaction is a vital part of any course experience. In fact, there has been recognition a long history of the critical role of interaction in supporting, and even defining, education. As early as 1916, John Dewey referred to interaction as the defining component of the educational process that occurs when the student transforms the information passed to them from another and constructs it into knowledge with personal application and belief (Dewey, 1916). Numerous studies since then underline Dewey’s defining component that high levels of student-to-student interaction, that is the students’ ability to share and discuss learning resources gathered or created by students, (Collis & Moonen, 2012) have a positive impact on learning (Anderson, 2003; Chadha, 2017).

In a traditional face-to-face classroom this interaction happens naturally, as students listen to each other’s comments, ask each other questions and build rapport through frequent contact. The same interaction occurs online as the asynchronous design of online spaces provide students with time for reflection and deliberation before they respond (Boud, 2001; Paul & Elder, 2013). A few studies offer a glance at the development of different forms of student-peer interactions built on the basis of asynchrony online (Anderson, 2003; Bender, 2012; Carini et al., 2006; Chadha, 2018; Chadha 2017). One type is the student/content interaction, a form that is built upon the benefits of asynchrony providing students the time to think, reflect, synthesize and communicate content after much reflection and search for information (Anderson, 2003; Chadha, 2018). This form includes visiting and revising discussions after much thought due to the online asynchronous environment (Chadha, 2018). The student/teacher interaction form is another type where the instructor designs the online space and activities for student interaction (Chadha, 2018). The student/student interaction is a form based on student-peer communication about the content especially as the asynchrony allows the discussion between students to continue without uninterrupted pauses, along with times for silence for them.
to reflect before continuing deliberations (Rudestam & Schoenholtz-Read, 2009). The continued interaction among students deepens learning, critical thinking and problem-solving skills that foster an active learning community (Anderson, 2003; Bernard, et al., 2009; Croxton, 2014; Jones et al., 2011). Finally, the teacher/teacher interaction form is one that refers to the interaction of teachers with their peers to create good practices (Anderson, 2003). These differing forms of interaction have an impact on student achievement and satisfaction, as reflected in their test performance, grades, and student satisfaction (Roblyer & Ekhaml, 2000).

Research consistently demonstrates that courses that involve students interacting with other students reported high levels of satisfaction and learning than courses without interaction (Chadha, 2017; Swan, 2002a). It is, therefore, imperative that instructors design online spaces for students to interact with each other while giving them time to think critically and build their relationships with peers online. It is as imperative to research and assess the different forms of interactions that develop among students. The central aim of this study is to expand upon the limited research on both the design of an online site created for the specified purpose of interactivity as well as to assess the varied forms of student interactions that form online. In doing so, this study provides a unique online pedagogical design that deepens student learning through interactivity, one that is useful across any disciplinary subject.

LITERATURE REVIEW

The importance of discussion based interactive learning has been emphasized for many years by a number of theorists who underscored the idea that students learn most effectively through operating jointly and engaging in discussion with fellow learners (Bornstein & Brunner, 1989; Chadha, 2018; Piaget, 1969; Vygotsky & Wertsch, 1981). Researchers have observed that in online environments, much like face-to-face classes, learning occurs through an egalitarian process in which participants generate, challenge, reflect upon and defend ideas, thereby constructing meaning through these exchanges (Paul & Elder, 2013; Rountree, 1995). Through the back-and-forth dialogue among peers, whether in online deliberative forums or face-to-face discussions, students perform similarly (Chadha, 2017; Botsch & Botsch, 2012; Lee & McLoughlin, 2007).

Online teaching methods using deliberations are comparable to face-to-face courses at promoting positive civic knowledge, attitudes and behaviors (Botsch & Botsch, 2012; Delli & Keeter, 1996). Peer discussions online are supported by several studies confirming that retention rates are on par between online and face-to-face courses; that is, despite the differences in mode of instruction, there were no significant differences in their course outcomes (Bolsen et al., 2016; Chadha, 2017; Kim & Bonk, 2006; Pape, 2010). In fact, interactive approaches have significantly more positive effects on student achievement than non-interactive or self-learning online (Balula & Moreira, 2014; Lou & d’ Apollonia, 2001).

The paradoxical attribute of online interactions is that virtual spaces use asynchrony which provides students the sense that ‘someone is always listening’ (Palloff & Pratt, 2007, p. 116). This individualized connection narrows the focus of the dialogue between just those involved (Rudestam & Schoenholtz-Read, 2009) allowing for personalized interactions to prevail despite differences in the dialogue (Rudestam & Schoenholtz-Read, 2009). This personalization along with the benefits of asynchrony allows students to listen to the ideas and arguments expressed by others, take time to reflect, ask peer’s insightful questions, ask for clarification in a peer’s perspective or challenge them for greater explanation before responding (Caspì et al., 2008; Chadha, 2018; Kiesler et al., 1984).

As students listen to each other intensely and attentively they develop several types of interaction. They explain their ideas to others, agreeing and/or disagreeing on issues furthering academic content (De Bono, 1985). They play devil’s advocate as they challenge a peer to account for their views (Chadha, 2017; Swan, 2002a). Or, they ask for clarification of discussion to something not understood and/or to flush out or clarify positions (Chadha, 2018; Stitzlein & West, 2014). They correct each
The Making of Adult Learners through Project-Based Learning
[www.igi-global.com/chapter/the-making-of-adult-learners-through-project-based-learning/80298?camid=4v1a](www.igi-global.com/chapter/the-making-of-adult-learners-through-project-based-learning/80298?camid=4v1a)

Visualizing Content for Computational Geometry Courses
Christodoulos Fragoudakis and Markos Karampatsis (2012). *Teaching Cases Collection* (pp. 581-604).
[www.igi-global.com/chapter/visualizing-content-computational-geometry-courses/62221?camid=4v1a](www.igi-global.com/chapter/visualizing-content-computational-geometry-courses/62221?camid=4v1a)