Chapter 9
Techniques and Trends Towards Various Dimensions of Robust Security Testing in Global Software Engineering

Muhammad Sulleman Memon
QUEST, Pakistan

ABSTRACT

With the growth of software vulnerabilities, the demand for security integration is increasingly necessary to more effectively achieve the goal of secure software development globally. Different practices are used to keep the software intact. These practices should also be examined to obtain better results depending on the level of security. The security of a software program device is a characteristic that permeates the whole system. To resolve safety issues in a software program security solutions have to be implemented continually throughout each web page. The motive of this study is to offer a complete analysis of safety, wherein protection testing strategies and equipment can be categorized into: technical evaluation strategies and non-technical assessment strategies. This study presents high-level ideas in an easy form that would help professionals and researchers solve software security testing problems around the world. One way to achieve these goals is to separate security issues from other enforcement issues so that they can be resolved independently and applied globally.

DOI: 10.4018/978-1-5225-9448-2.ch009
INTRODUCTION

The internet revolutionized our society, affected the software program industry, and the change of statistics and expertise became a principal part of software development, promoting the globalization of the software program industry (Banerjee & Pandey, 2009). This variation in information flow removes the constraints of conventional initiatives and promotes the free go with the flow of statistics, sources, and information between tasks. Software industry globalization includes several aspects, such as part of the external and collective externalization development process, extensive use of a collaborative environment to facilitate the introduction of an entire new software development model, such as resource exchange and open source (Sodiya, Onashoga, & Ajayi, 2006). Resources for sharing knowledge are more than just promoting reuse and teamwork. They also bring new challenges to the software engineering community (SE) knowledge and resources are no longer managed by a single project or organization, but are now distributed across multiple projects, organizations and even in the global software ecosystem (Porru, Pinna, Marchesi, & Tonelli, 2017). One of the challenges arising from this exchange of knowledge is Information Security (IS). This is becoming a major threat to the software development community. In essence, it promotes the notion that IS should take into account different security concepts (safe coding practices, knowledge of software security vulnerabilities in the development process and the importance of IS to the analytical software community are reflected in the fact that it is an integral part of the current SE best practices (Papadakis et al., 2019). Software checking out is a very useful manner to run an application looking for errors. It is identified that 40% to 50% of total growth spending is consumed on software testing. Some of the significant software testing techniques classified by purpose are precision tests, performance tests, safety tests and reliability tests. The software test can be called the software quality measurement process that is being developed and the detection of errors in a program. In addition, it is also a system to determine the consistency of the security characteristics of the software application with the design (Dhir & Kumar, 2019). The security requirements of the blanketed software program are: confidentiality, authentication, availability, authorization, integrity and non-repudiation. Other requirements are the protection of private access control, protection management, auditing, and so on. Software protection is the protection of software towards attacks. The priority for safety tests increases day by day (Villani, Pontes, Coracini, & Ambrósio, 2019). Software security testing is also categorized as revision techniques, objective identity and evaluation, and goal analysis of vulnerability. Security checking out equipment have additionally been evolved for supply code analysis, code evaluate, packet analysis, binary code penetration takes a look at, wireless detector, static analysis tool, check gear, source code protection evaluation, static code evaluation, vulnerability...
31 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage:

www.igi-global.com/chapter/techniques-and-trends-towards-various-dimensions-of-robust-security-testing-in-global-software-engineering/230398?camid=4v1


www.igi-global.com/e-resources/library-recommendation/?id=107

Related Content

Semantic Models for Competence-Based Assessment

www.igi-global.com/article/semantic-models-for-competence-based-assessment/117572?camid=4v1a

Show Me the Money

www.igi-global.com/chapter/show-money/31464?camid=4v1a
Knowledge Base Development in Virtual Enterprise Network as Support for Workplace Risk Assessment
[www.igi-global.com/article/knowledge-base-development-virtual-enterprise/55990?camid=4v1a](www.igi-global.com/article/knowledge-base-development-virtual-enterprise/55990?camid=4v1a)

Technological Dissemination in the Portuguese Payments System: An Empirical Analysis to the Region of Santarém
Sara Pinto and Fernando Ferreira (2010). *International Journal of Human Capital and Information Technology Professionals* (pp. 55-75).
[www.igi-global.com/article/technological-dissemination-portuguese-payments-system/48207?camid=4v1a](www.igi-global.com/article/technological-dissemination-portuguese-payments-system/48207?camid=4v1a)