Chapter 36

Simulation-Based Approaches for Ecological Niche Modelling: A Geospatial Reference

Anusheema Chakraborty
TERI University, India

P K Joshi
Jawaharlal Nehru University, India

ABSTRACT

Over recent years, many modelling approaches have been used to map and monitor both present and potential distribution of species in the context of ecological niche-based conservation, especially in the face of global environmental change. Using different statistical techniques in a built-in geographic information system (GIS), the development of predictive species distribution models has extensively increased. This chapter introduces a geospatial reference to simulation-based approaches of ecological niche models. The chapter discusses various environmental modeling tools and simulation models available in open source domain used by scientific communities. As an effort of this chapter, we focus on the potential of using such experimental models for large-scale ecosystem modelling studies, highlighting opportunities of research, for a variety of bio-geographical applications. It would serve as a basis for beginners in ecology exploring this field of research, who can further contribute and develop such models to better understand the complex field of ecosystem studies.

INTRODUCTION

The knowledge of spatial distribution of species is essential, especially to investigate the species’ realized and fundamental niches. The understanding of this species-environment relationship is central for many current research programmes in ecology and conservation under global change (climatic and environmental) and it is of great scientific and societal relevance. This realization of the importance of predictive modelling of species is crucial in the field of both conventional as well as applied ecological research. Over past few years, species distribution models have seen an impressive growth in its mod-

Simulation-Based Approaches for Ecological Niche Modelling

Modelling approaches in studies of biogeography, conservation biology, ecology, palaeo-ecology, wildlife management, and more recently, studying the effects of climate change (Table 1). Such an experimental modeling approach allows us to estimate species’ ecological requirements (Araújo and Guisan, 2006), generally based on various hypothesis (Guisan and Zimmermann, 2000). The idea is to quantify correlation between known occurrence of species and features of the ecological and environmental landscape (Miller, 2010). These models are often termed as species distribution models, climatic envelope models, or, most commonly known as, ecological niche-based models. The aim of such models is to reconstruct empirically derived ‘environmental profile’ which can be used to estimate the ecological space of species and/or predict the geographical distribution of species (Peterson, 2006). This sort of useful predictive modelling technique has had overwhelming success in the recent past (Austin, 2007, 2002; Elith et al., 2006, 2002; Guisan and Thuiller, 2005; Guisan and Zimmermann, 2000; Peterson, 2006; Sinclair et al., 2010). However, despite widespread use of these models, conceptual ambiguities and the biotic as well as abiotic limiting constraints need to be clearly addressed before any practical application of these modeling results are made available (Araújo and Guisan, 2006; Dormann, 2007).

The predictive modelling of species is one of the vital components of applied research (geography and ecology). With the advancement in geographic information system (GIS) and other related technologies, increased availability of satellite-based remotely sensed data and myriad number of open source tools that have developed; this enables scientists to employ powerful and sophisticated means of species’ distribution modelling. As a result of simultaneous development of parallel applications with considerably different objectives, this process referred here as ‘ecological niche-based modelling’ has been previously described as ‘predictive vegetation mapping’ (Franklin, 1995; Miller et al., 2007), ‘predictive habitat distribution modeling’ (Guisan and Zimmermann, 2000), ‘bioclimatic envelope modeling’ (Heikkinen et al., 2006; Pearson and Dawson, 2003), ‘habitat suitability index mapping’ (Brown et al., 2000; Roloff and Kernohan, 1999), ‘habitat suitability modeling’ (Hirzel et al., 2006, 2002), and ‘niche modeling’

Table 1. Some of the uses of ecological niche-based models

<table>
<thead>
<tr>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantifying the environmental niche of species</td>
<td>Austin et al., 1990; Vetaas, 2002</td>
</tr>
<tr>
<td>Testing biogeographical, ecological and evolutionary hypotheses</td>
<td>Anderson et al., 2002; Graham et al., 2004; Leathwick, 1998</td>
</tr>
<tr>
<td>Supporting appropriate management plans for species recovery and mapping suitable sites for species reintroduction</td>
<td>Pearce and Lindenmayer, 1998</td>
</tr>
<tr>
<td>Assessing species invasion and proliferation</td>
<td>Beierling et al., 1995; Peterson, 2003</td>
</tr>
<tr>
<td>Supporting conservation planning and reserve selection</td>
<td>Araújo et al., 2004; Ferrier, 2002</td>
</tr>
<tr>
<td>Suggesting unsurveyed sites of high potential of occurrence for rare species</td>
<td>Engler et al., 2004; Raxworthy et al., 2003</td>
</tr>
<tr>
<td>Modelling species assemblages (biodiversity, composition) from individual species predictions</td>
<td>Ferrier et al., 2002a; Guisan and Theurillat, 2000; Leathwick, 1998</td>
</tr>
<tr>
<td>Assessing the impact of climate, land use and other environmental changes on species distributions</td>
<td>Thomas et al., 2004; Thuiller, 2004</td>
</tr>
<tr>
<td>Building bio- or ecogeographic regions</td>
<td>No published example found</td>
</tr>
<tr>
<td>Improving calculation of ecological distance between patches in landscape meta-population dynamic and gene flow models</td>
<td>No published example found</td>
</tr>
</tbody>
</table>

Source: Guisan and Thuiller (2005).
Related Content

Enhanced Fuzzy Assessment Methodology to Find Overlapping in Membership Function Using K Ratio to Find the Yield of Rice

Low Carbon Energy Innovations Systems in Natural Resource Rich Developing Countries: The Case of Brazil
[www.igi-global.com/chapter/low-carbon-energy-innovations-systems-in-natural-resource-rich-developing-countries/233010?camid=4v1a](www.igi-global.com/chapter/low-carbon-energy-innovations-systems-in-natural-resource-rich-developing-countries/233010?camid=4v1a)

Innovative Technologies for E-Learning of Safety of Agro-Industrial Production
[www.igi-global.com/chapter/innovative-technologies-for-e-learning-of-safety-of-agro-industrial-production/225691?camid=4v1a](www.igi-global.com/chapter/innovative-technologies-for-e-learning-of-safety-of-agro-industrial-production/225691?camid=4v1a)

A Comparative Analysis of the LAG Tara Oasului and Tara Oltului as Romanian Management Strategies