Chapter VI

Internet Voting: Beyond Technology

Trisha Woolley
Marist College, USA

Craig Fisher
Marist College, USA

Abstract

This chapter discusses issues relating to the use of Internet voting in public elections. Due to the recent problems in public elections and growing popularity of the Internet many are asking whether voting should take place via the Internet. Businesses are moving ahead in their use of the network to perform business transactions, implying that something as “simple” as counting votes could also be accomplished via the network. However, the United States is not ready to accurately and fairly count votes electronically from a sociological perspective. Analogies can be drawn between the distribution of the telephone and the distribution of the computer along various demographic lines that inform as to the viability of moving ahead too rapidly with I-voting. Local governments should continue to perform pilot voting projects that will pave the way for the future.
Introduction

One would think that by the 21st Century the most technologically advanced country in the world would be able to accurately count votes. However, the Presidential election of 2000 has led to outrage at the lack of ability to simply count votes. The state of Florida became the primary focus as its votes were counted and recounted. “An entire nation shared in a bug reporting exercise that will likely accelerate fundamental changes to how we administer democracy in the near future” (Weiss, 2001, p. 24).

Currently, voting takes place at supervised local polling sites with largely antiquated polling machines. Due to the recent popularity of e-commerce many are asking whether the voting process should take place electronically through the use of the Internet. Proponents of Internet voting (I-voting) suggest that I-voting will solve several financial and social problems (Cranor, 1996; Mohen & Glidden, 2001; Sink, 2000). An individual could vote from his/her home or office, rendering obstacles such as traffic, weather and working hours irrelevant. Disabled people and “shut-ins” could have easy access to voting systems (Sink, 2000). In addition, since computers can accurately and rapidly tabulate millions of financial transactions daily, the public naturally believes that I-voting may improve the accuracy of elections (Gugliotti, 2001), may increase voter turnout and is more secure than punch card systems (Raney, 1999).

In contrast to the optimists, there are several who highlight the technical difficulties (Phillips & Von Spankovsky, 2001; Rothke, 2001; Schwartz, 2000; White, 2001). In addition, I-voting departs from traditional voting techniques in that it uses computers that are “not necessarily owned and operated by election personal” (California Internet Voting Task Force (CIVTF), 2000, p. 3). This supervision is a cornerstone of our election process and to maintain principles of secret ballots and free elections, the United States government must approve all election equipment and procedures.

While I-voting is not yet approved for usage as election equipment, it is being tested and observed in various small-scale elections. Pennsylvania’s Montgomery County moved from mechanical to I-voting, replacing its 40-year-old voting booths with new MicroVote machines in 1992. The March 2000 Arizona Democratic Party is the first time I-voting was used in a presidential preference primary (Mohen & Glidden, 2001). The U.S. Military conducted a small election (Phillips & Von Spakovsky, 2001) that illustrated that people can vote over the Internet under ideal conditions. However, it contained only 250 voters and most conditions are far from ideal.
A Survey of Risk-Aware Business Process Modelling
Hanane Lhannaoui, Mohammed Issam Kabbaj and Zohra Bakkouy (2017).
www.igi-global.com/article/a-survey-of-risk-aware-business-process-modelling/181854?camid=4v1a

An Introduction in Digital Watermarking: Applications, Principles, and Problems
www.igi-global.com/chapter/introduction-digital-watermarking/23113?camid=4v1a