Forecasting Automobile Sales in Turkey with Artificial Neural Networks

Aycan Kaya, Department of Industrial Engineering, Istanbul Technical University, Istanbul, Turkey
Gizem Kaya, Department of Management Engineering, Istanbul Technical University, Istanbul, Turkey
Ferhan Çebi, Department of Management Engineering, Istanbul Technical University, Istanbul, Turkey

ABSTRACT

This study aims to reveal significant factors which affect automobile sales and estimate the automobile sales in Turkey by using Artificial Neural Network (ANN), ARIMA, and time series decomposition techniques. The forecasting model includes automobile sales, automobile price, Euro and Dollar exchange rate, employment rate, consumer confidence index, oil prices and industrial production confidence index, the probability of buying an automobile, female employment rate, general economic situation, the expectation of general economic situation, financial status of households, expectation of financial status of households. According to the regression results, changes in Dollar exchange rate, the expectation of financial status of households, seasonally adjusted industrial production index, logarithmic form of automobile sales before-one-month which have a significant effect on automobile sales, are found to be the significant variables. The results show that ANN has a better estimation performance with MAPE=1.18% and RMSE=782 values than ARIMA and time series decomposition techniques.

KEYWORDS

Artificial Neural Network, ARIMA, Automotive, Regression, Demand Forecasting

INTRODUCTION

The automotive industry, with a turnover of 4 trillion dollars, corresponds to the world’s 4th largest economy by 2016 (TAYSAD, 2017) and 88 million automobiles are sold worldwide in 2016, up to increase 4.8% from a year earlier (PWC, 2017). In the future, the automotive industry will have to transform to produce electrified, autonomous, shared, connected and yearly updated automobiles of the future and through this transformation period, new automobile sales are expected to increase worldwide (PWC, 2017-2018). To adapt this transformation and satisfy the increasing customer demand in the competitive environment, forecasting automobile sales is a critical and challenging issue to deal with. Sales forecasting provides a basis for creating a competitive and effective business strategy. A reasonable sales forecasting satisfies customer demand on time and helps organizations to make better purchasing decisions and to determine optimal inventory level. On the other hand, insufficient sales forecasting causes customer loss and higher number of inventories.

Sales forecasting is a highly important issue to deal with, especially in the production of products like automobile consisting a wide range of parts (more than 20,000 parts) which have different material structure and need different production type and technology. Because of all these reasons, this study aims to reveal significant factors, which affect automobile sales and estimate the automobile sales in

DOI: 10.4018/IJBAN.2019100104

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Turkey by using Artificial Neural Network (ANN), ARIMA and time series decomposition techniques. The remaining part of the paper is organized as follows: A review of the literature is presented in Section 2. Section 3 discusses the research methodology and in Section 4, results of the study are presented. The article concludes with the findings of the study and suggestions for future research.

LITERATURE REVIEW

Demand forecasting methods are divided into two categories as qualitative and quantitative methods. The qualitative methods like Delphi technique, market research, and expert opinions are subjective methods based on one’s thoughts and experience, and they are used in uncertain situations where there are insufficient data. On the other hand, the quantitative methods are used in cases where there are sufficient numerical quantities based on mathematical models (Karaatli et al., 2012). Quantitative methods are divided into two categories as time series (Box-Jenkins method, trend analysis, moving averages, exponential smoothing technique, etc.) and mixed methods (simple and multi-regression, econometric models and artificial intelligence and heuristics (genetic algorithm, support vector machines and artificial neural networks)) (Karaatli et al., 2012).

In the literature, several studies are using different demand forecasting methods to handle demand forecasting problem in the automotive sector. Wang et al. (2011) use an adaptive-network-based fuzzy inference system (ANFIS) to estimate new automobile sales in Taiwan. They use coincident indicators, leading indicators, wholesale price indices, independent indices and exchange rates in their forecasting model. The determinants of these indicators are as follows:

- Coincident indicators: Industrial production index, real customs-cleared exports, the sales of manufacturing, the sales index of wholesale, retail, and food services, real machinery and electrical equipment imports, the employment of non-agricultural, the total power consumption.
- Leading indicators: Average monthly overtime in industry and services, the index of export orders, the superficial measurements of housing starts and building permits, the indexes of producer’s inventory, real monetary aggregates, SEMI book-to-bill ratio, stock price index.
- Wholesale price indices: The prices of the automobile, the oil prices, the prices of automobile components.
- Independent indices: Population, unemployment rate, the average earnings of employees in industry and services.
- Exchange rates: Exchange rates the N.T. dollar against the US dollar, exchange rates for the N.T. dollar against the Eurodollar.

They compare the results of ANFIS with ARIMA and ANN. ANFIS has been observed to perform better than the other two. Matsumoto and Ikeda (2015) use time series for demand forecasting of the reproduction of automobile parts. Even though product returns are extremely uncertain in terms of timing and quantity, manufacturers need to balance the demand for remanufactured products in order to avoid stock accumulation and to prevent the unmet return requests. For 400 type remanufactured alternators and starters, 12 years’ data are used. Vahabi et al. (2016) combine adaptive-network-based fuzzy inference system (ANFIS) and genetic algorithm to forecast automobile sales of a leading company in Iran. They use per capita income, inflation rate, housing, Importation, Currency Rate (USD), loan interest rate and automobile import tariffs as input variables. They compare the results of their method with ANN, and their method gives better results than ANN. Abu-Eisheh and Mannering (2002) used a dynamic automobile demand simulation model based on a simultaneous-equation system, and they used lagged automobile quantity and price variables, economic, financial and operating cost variables, income and government policy variables. Gao et al. (2017) proposed a heuristic method based on particle swarm and ant colony techniques to forecast automobile sales in
Information Retrieval Technologies and the “Realities” of Music Information Seeking
www.igi-global.com/chapter/information-retrieval-technologies-and-the-realities-of-music-information-seeking/142642?camid=4v1a