Chapter X

Theoretical and Practical Considerations in the Design of Web-Based Instruction

Susan M. Miller
Texas A & M University-Commerce, USA

Kenneth L. Miller
Grayson Place Consulting, USA

INTRODUCTION

The intended audiences for this chapter are (a) individuals who design and develop Web-based instruction in any setting (i.e., university faculty, instructional developers in medical, business and government settings), and (b) graduate students in the fields of instructional design, educational technology, and educational psychology.

The purposes of this chapter are to:

• describe three unique features of the Web environment relevant to instruction: structure, media, and communication capabilities;
• explore the role of epistemology in the design of instruction: relationships of epistemology to cognitive learning theories, Web technologies and practice;
• examine five factors that influence the design of Web-based instruction: theoretical orientation, learning goals, content, learner characteristics, and technological capabilities;
• recommend ten issues for Web course developers to consider as they design Web-based instruction;
• discuss four factors that will affect the future of Web-based instruction: efficacy studies, technological advances, pressures of competition and cost containment, and professional responses to market influences.
UNIQUE INSTRUCTIONAL FEATURES
OF THE WORLD WIDE WEB

Web-based instruction uses hyperlinking and communication capabilities that are

time and place independent (Jonassen, Davidson, Collins, Campbell, & Haag, 1995). These

capabilities apply to on-line courses in both education and corporate settings. Designing

instruction for on-line delivery requires consideration of this complex learning environ-

ment. The associative, nonlinear, and hierarchical structure of the Web, enhanced media

capabilities, and a variety of synchronous and asynchronous communication opportunities

are unique features of the Web that influence instruction (Ayersman, 1995b; Jonassen,

1991, 1993; McGuire, 1996; Yang, 1996). Although discussed separately below, these

features are interrelated. For example, constructivists view the Web’s nonlinear and

associative structure as a way for students to express and reflect understanding of a topic as

they collaboratively build knowledge. In turn, collaboration requires sophisticated and

supportive communication and performance tools (i.e., Computer Supported Communication

Work tools as noted in Jonassen, et al., 1995; Mayes, 1999).

Structure

There is unanimous agreement that the hypermedia structure of the Web is associative,

nonlinear, and hierarchical with unrestricted hyperlinking capabilities (e.g., Ayersman,


structure can be thought of as “mimicking” the associative, nonlinear, hierarchical structure

of memory (Jonassen, 1991).

The semantic network model of memory proposes a representation system constructed

of nodes (i.e., propositions or concepts) that are meaningfully connected or linked (Jonassen,


concepts in a nonlinear and hierarchical fashion forming a net-like organization of memory

(Jonassen, 1991; Lanza, 1991). This structure is reflected in the net-like organization of the

Web where nodes are linked in an associative, nonlinear, and hierarchical fashion. Larger

configurations of associations can be assembled that reflect a schematic model of memory.

A schema consists of associative connections that represent a larger body of knowledge, that

is, what one knows about “something.” Schemata interrelate to form the structure of

memory and learning involves the reorganization of these cognitive structures (Jonassen,

1991; McGuire, 1996). Although consensus exists on the correspondence between cognitive

models of memory and the structure of the Web, differences have emerged in the

application of this similarity to the design of instruction.

Media

Use of the term “hypermedia” instead of “hypertext” in describing the structure of the

Web reflects the “multimedia” nature of information that is available (Yang, 1996). The

Web structure is not comprised solely of links among text documents or parts of text

documents (Jonassen, 1991; Vrasidas, 1996), but of a range of media such as illustrations,

pictures, animation, video, and sound. The “media” component of hypermedia enables

representations of real-world contexts that produce authentic learning situations. Techno-

logical advances (e.g., second generation hypertext systems and browsers, alternate link

types, distributed architecture, audio and video streaming technologies, [see Hill, 1996])
A Systematic Review of Research on Collaborative Learning with Concept Maps
[www.igi-global.com/chapter/systematic-review-research-collaborative-learning/36298?camid=4v1a](www.igi-global.com/chapter/systematic-review-research-collaborative-learning/36298?camid=4v1a)