Chapter X

Task-Orientation Online Discussion: A Practical Model for Student Learning

Byron Havard, University of West Florida, USA
Jianxia Du, Mississippi State University, USA
Anthony Olinzock, Mississippi State University, USA

Abstract

A dynamic task-oriented online discussion model for deep learning in distance education is described and illustrated in this chapter. Information, methods, and cognition, three general learning processes, provide the foundation on which the model is based. Three types of online discussion are prescribed: flexible peer, structured topic, and collaborative task. The discussion types are paired with tasks encouraging students to build on their adoptive learning, promoting adaptive learning and challenging their cognitive abilities, resulting in deep learning. The online discussion model was applied during two semesters of an online multimedia design for instruction graduate-level course. The strategies for creating dynamic discussion
serve to facilitate online interactions among diverse learners and assist in the design of assignments for effective interactions. The model proposed and the strategies for dynamic task-oriented discussion provide an online learning environment in which students learn beyond the course goal.

Introduction

The purpose of this study was to apply a theoretical model in an actual online discussion context. Deep learning, the holistic acquisition of higher-order skills (such as analyzing, interpreting and evaluating) exhibited through higher-order problem solving (Entwistle & Ramsden, 1983), serves as the educational goal for this model. Deep learning, according to Weigel (2001), is “learning that promotes the development of conditionalized knowledge and metacognition through communities of inquiry” (p. 5). The theoretical underpinnings of the model may be applied to many diverse educational environments. This chapter offers distance learning educators strategies within the proposed model that will enhance online courses. The model reveals an approach to distance learning that fosters and encourages deep learning for higher-order thinking. Application of this model in distance learning may be applied to a variety of online courses to enhance student learning.

Theoretical Framework

Several researchers have contributed to the effort of understanding the learning process. Their conclusions can help in the process of developing models for analyzing the distance learning process. Henri (1992) developed an analytical model that can be used by educators for a better understanding of the learning process. This model was developed to emphasize five dimensions of the learning process exteriorized in the message: participation, interaction, social, cognitive and metacognitive dimensions. Henri’s model provides information on participants as learners and on their ways of dealing with a given topic. Oliver and Mcloughlin (1996) suggested some changes to Henri’s analytical model. They recognized five kinds of interactions: social, procedural, expository, explanatory and cognitive. Oliver and Mcloughlin’s model has been used for analyzing the different kinds of communication in distance learning and traditional teaching.

The model of deep learning for distance education (see Figure 1) is established through the categorization of the five kinds of interactions proposed by Oliver and Mcloughlin (1996) into three general processes: information, methods and cogni-
Related Content

Toward a Propensity-Oriented Player Typology in Educational Mobile Games
www.igi-global.com/article/toward-a-propensity-oriented-player-typology-in-educational-mobile-games/201872?camid=4v1a

Next Generation Science Assessment: Putting Research into Classroom Practice
www.igi-global.com/chapter/next-generation-science-assessment/74100?camid=4v1a

Management of the Learning Space
www.igi-global.com/chapter/management-learning-space/18706?camid=4v1a

Usability Evaluation of Online Learning Programs: A Sociological Standpoint
www.igi-global.com/chapter/usability-evaluation-online-learning-programs/30617?camid=4v1a