Chapter 21
A Survey of Ontology-Based Frameworks for Sustainable Supply Chain Interoperability and Collaboration

Samia Hilal
Concordia University, Canada

ABSTRACT

Accurate and meaningful sharing of knowledge across the supply chain enables effective and timely decision making, a key requirement for ensuring cost-effectiveness, availability, and quality of products and services. Effective elicitation, analysis, classification, and representation of domain knowledge are all essential activities for effective sharing of information. Ontology-based frameworks create a common formal representation of a particular domain that can be communicated, and understood by people and machine agents in addition to integrating different knowledge bases to connect heterogeneous engineering applications. Such frameworks have been exploited in the manufacturing domain as buyer-supplier discovery systems that can be used for quick matchmaking, intelligent connectivity, knowledge-driven collaboration, and possible establishment of stronger, sustainable, long-term, and strategic supply chains. A literature review has identified many frameworks with varying knowledge sharing capabilities that are highly determined by the underlying ontological formalism.

LITERATURE REVIEW

A Survey of Different Approaches in Ontological Frameworks

The main purpose of this survey is to cover the topic from different angles and to create a cohesive unit of knowledge based on the large number of references that have been reviewed by the author. The information presented has been collected and referenced from many different sources in an effort to bring valid, pertinent and complementary knowledge that can connect the different areas covered by this research.

DOI: 10.4018/978-1-5225-9570-0.ch021
Knowledge Representation is an evolving task that needs to be continually adapted and extended in order to be able to address the new challenges and requirements in information management.

Outline of Existing Works

It has also been observed that the knowledge sharing capabilities achieved by an ontology-based approach (framework) is highly determined by the choice of the underlying logic base or ontological formalism. An Ontological Formalism is a formal language that supports the construction of an ontology-based model of the subject matter (Chungoora 2010). To date, several such formalisms have been exploited to develop ontological frameworks that have been successfully implemented to represent the design and manufacturing domains. However, no clear consensus has been reached on a preferred approach.

This survey takes a Software Engineering approach for an overview of several Ontology-based frameworks. Gruber 1993 and Studer et al. 1997 are both highly-cited early works in ontology. Both works have

Table 1. Outline of Existing Works

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Defining and Measuring Supply Chain Interoperability</td>
<td>Using Supply Chain Interoperability as a Measure of Supply Chain Performance, Chalyvidis C, Ogden J, Johnson A., 2013</td>
</tr>
<tr>
<td>A Coordination Framework for Manufacturing</td>
<td>Ontology- Driven Coordination for Supply Chain System, Xin J, 2005</td>
</tr>
<tr>
<td></td>
<td>Research on ontology-based integration of product knowledge for collaborative manufacturing, Yang, J; Gaoliang, P; Wenjian, L., 2010</td>
</tr>
<tr>
<td></td>
<td>Semantic rule modelling for intelligent supplier discovery, Ameri F, McArthur C., 2014</td>
</tr>
<tr>
<td></td>
<td>An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry. Sanya I, Shehab E., 2014</td>
</tr>
</tbody>
</table>