Chapter 11

Bipolar Fuzzy Structure of H–Ideals in BCI–Algebras

Tapan Senapati
https://orcid.org/0000-0003-0399-7486
Southwest University, China

Guiyun Chen
Southwest University, China

ABSTRACT

In this chapter, the concepts of bipolar fuzzy H-ideals of BCI-algebras are introduced and their natures are investigated. Relations between bipolar fuzzy subalgebras, bipolar fuzzy ideals, and bipolar fuzzy H-ideals are discussed. Conditions for a bipolar fuzzy ideal to be a bipolar fuzzy H-ideal are provided. Some characterization theorems of bipolar fuzzy H-ideals are established. A bipolar fuzzy H-ideal is established by using a finite collection of H-ideals. The authors have shown that if every bipolar fuzzy H-ideal has the finite image, then every descending chain of H-ideals terminates at finite step.

1. INTRODUCTION

Zhang (1994) initiated the concept of bipolar fuzzy sets (BFSs) as a generalization of fuzzy sets (Zadeh, 1965). In fuzzy sets membership degree range is [0,1]. In a BFS membership degree range is increased from the interval [0,1] to the interval [-1,1]. The membership degree 0 means that elements are irrelevant to the corresponding property, the membership degrees on (0,1] indicate that elements somewhat satisfy the property and the membership degrees on [-1,0] indicate that elements somewhat satisfy the implicit counter-property. This domain has recently motivated new research in several directions (Akram, 2011, Dubois, 2008, Zadrozny & Kacprzyk, 2012, Zhang & Zhang, 2004).

DOI: 10.4018/978-1-7998-0190-0.ch011
introduced (intuitionistic) fuzzy translations of (intuitionistic) fuzzy \(H \)-ideals in \(BCK/BCI \)-algebras and investigated their properties in details. The author (together with colleagues) have done lot of works on \(B/BG/G \)-algebras (Bhowmik et al, 2014, Senapati et al. 2012, 2014, 2015a, 2015b, 2015c, 2016) which is related to \(BCK/BCI \)-algebras.

Lee (2009) introduced the notion of bipolar fuzzy subalgebras and ideals in \(BCK/BCI \)-algebras. The concept of bipolar valued fuzzy translation and bipolar valued fuzzy \(S \)-extension of a bipolar valued fuzzy subalgebra in \(BCK/BCI \)-algebra was introduced by Jun et al.(2009). Lee et al. (2011) also extended this study to \(a \)-ideals of \(BCI \)-algebras.

Motivated by this, in this chapter, the notions of bipolar fuzzy \(H \)-ideals (BFHIs) of \(BCI \)-algebras is introduced and their properties are investigated. Relations among bipolar fuzzy subalgebras, bipolar fuzzy ideals and BFHIs are discussed. Conditions for a bipolar fuzzy ideal to be a BFHI are provided. Some characterization theorems of BFHIs are established. A BFHI is established by using a finite collection of \(H \)-ideals.

2. PRELIMINARIES

In this section, some elementary aspects that are necessary for this paper are included.

By a \(BCI \)-algebra we mean an algebra \((X,*,0)\) of type \((2,0)\) satisfying the following axioms for all \(x,y,z \in X \):

1. \(((x*y)*(x*z))*(z*y)) = 0 \]
2. \((x*(x*y))*y = 0 \]
3. \(x*x = 0 \]
4. \(x*y = 0 \) and \(y*x = 0 \) imply \(x = y \).

If a \(BCI \)-algebra \(X \) satisfies \(0*x = 0 \) for all \(x \in X \), then we say that \(X \) is a \(BCK \)-algebra.

We can define a partial ordering \(\leq \) by \(x \leq y \) if and only if \(x*y = 0 \).

A non-empty subset \(S \) of \(X \) is called a subalgebra (Jun, 1993) of \(X \) if \(x*y \in S \) for any \(x,y \in S \).

A non-empty subset \(I \) of \(X \) is called an ideal (Jun, 1993) of \(X \) if it satisfies (I1) \(0 \in I \) and (I2) \(x*y \in I \) and \(y \in I \) imply \(x \in I \).

A non-empty subset \(I \) of \(X \) is said to be a \(H \)-ideal (Khalid & Ahmed, 1999) of \(X \) if it satisfies (I1) and (I3) \(x*y*z \in I \) and \(y \in I \) imply \(x*x \in I \) for all \(x,y,z \in X \).

A \(BCI \)-algebra is said to be associative (Hu & Iseki, 1980) if \((x*y)*z = x*(y*z) \) for all \(x,y,z \in X \).

Definition 2.1 (Zadeh, 1965) Let \(X \) be the collection of objects denoted generally by \(x \), then a fuzzy set \(A \) in \(X \) is defined as \(A = \{ \langle x, \lambda_A(x) \rangle : x \in X \} \), where \(\lambda_A(x) \) is called the membership value of \(x \) in \(A \) and \(0 \leq \lambda_A(x) \leq 1 \).

Definition 2.2 (Jun, 1993) A fuzzy set \(A = \{ \langle x, \lambda_A(x) \rangle : x \in X \} \) in \(X \) is called a fuzzy subalgebra of \(X \) if it satisfies the inequality \(\lambda_A(x*y) \geq \min\{\lambda_A(x), \lambda_A(y)\} \) for all \(x,y \in X \).