Chapter 6
Making Success:
Researching a School District’s
Integration of the Maker Movement
Into Its Middle and High School

Keith W. Trahan
University of Pittsburgh, USA

Renata de Almeida Ramos
https://orcid.org/0000-0002-5649-9061
University of Pittsburgh, USA

Jeffrey Zollars
University of Pittsburgh, USA

Wei Tang
https://orcid.org/0000-0002-9981-4594
University of Pittsburgh, USA

Stephanie Maietta Romero
University of Pittsburgh, USA

Cynthia A. Tananis
University of Pittsburgh, USA

ABSTRACT

Increasingly, the maker movement has been pointed to as a means of bringing
more innovation and creativity into education. As an educational program, making
has pressed educators to question entrenched beliefs and assumptions about the
structure of activities, lessons, and classes, pushing them to embrace a more student
and experience driven learning environment. “Making Success” was a two-year
research project to investigate and describe the integration of making into one school
district’s middle and high school. The starting point of the research was to learn and

DOI: 10.4018/978-1-7998-2517-3.ch006

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
describe the critical characteristics and capacities that allowed TRSD to integrate making so deeply into its secondary schools. A key lesson of the project was that many interconnected ideas and people played important roles in the initiative to bring about success.

INTRODUCTION

Making is one of the more recent initiatives espoused as a potential remedy for the persisting challenges of the United States of America (U.S) schools. Educators, researchers, and policy makers have initiated countless efforts to improve U.S. education and workforce development in Science Technology Engineering and Mathematics (STEM) (Cuban, 2018; Elmore, 2000). Increasingly, the maker movement has been implemented in U.S. schools to provide learning opportunities that spark student interest in STEM. As a teaching practice, making is a set of activities that uses high and low technologies to design, construct, test, and revise objects while integrating a range of disciplines (Bevan, 2017; Halverson & Sheridan, 2014; Peppler & Bender, 2013). Making has pressed educators to question entrenched beliefs and assumptions about the structure of activities, lessons, and classes, pushing them to embrace a more student and experience driven learning environment.

Found in both formal and informal education settings, makerspaces are the material representation of the Maker Movement. Makerspaces house the resources used to foster and support making. The Fabrication Laboratory (Fab Lab), from the Massachusetts Institute of Technology (MIT), is perhaps the most often cited example of a makespace, particularly regarding the promotion of high end technology (e.g., 3D printers, laser cutters, etc.). Nonetheless, a makespace can be any space where making is promoted.

Although making has become well accepted in U.S. education, the maker movement is not without critics. In the U.S, making is often depicted in its most narrow and branded version as mostly a pursuit of white, middle-class, male hobbyists with an abundance of technical knowhow, experience, and resources to create an array of artifacts (Barton, Tan, & Greenberg, 2017; Vossoughi, Hooper, & Escude, 2016). Critics have also cited a number of difficulties and challenges related to making: the considerable time it takes for educators to learn how to use the technology in the makerspace; how to connect making to the curriculum in a meaningful way; how to address constant battles with technology (e.g. troubleshooting) and students’ misuses of technology; the transdisciplinary nature of making (e.g. some teachers may feel comfortable with some overlapping of crafting and computing, but others don’t); and questions about how to assess making, especially for projects that are not finished within timeframes that work for the school or that fail altogether (Stevenson et al., 2019; Fields et al, 2017; Resnick & Rosenbaum, 2013).
Self-Regulated Learning as a Method to Develop Scientific Thinking
www.igi-global.com/chapter/self-regulated-learning-as-a-method-to-develop-scientific-thinking/121897?camid=4v1a