Chapter XIX
Helping to Develop Knowledge Management Systems by Using a Multi-Agent Approach

Aurora Vizcaino
University of Castilla-La Mancha, Spain

Juan Pablo Soto
University of Castilla-La Mancha, Spain

Javier Portillo
University of Castilla-La Mancha, Spain

Mario Piattini
University of Castilla-La Mancha, Spain

ABSTRACT

Efforts to develop Knowledge Management have increased in recent years. However, many of the systems implanted in companies are still not greatly used by the employees because the knowledge that these systems have is often not valuable or on other occasions, is useful but employees do not know how to search for that which is most suitable. Moreover, employees often receive too many answers when they consult this kind of systems and they need to waste time evaluating all of them in order to find that which is most suitable for their necessities. On the other hand, many technical aspects should also be considered when developing a multi-agent system such as what knowledge representation or retrieval technique is going to be used. To find a balance between both aspects is important if we want to develop a successful system. However, developers often focus on technical aspects giving less importance to knowledge issues. In order to avoid this, we have developed a model to help computer science engi-
Helping to Develop Knowledge Management Systems by Using a Multi-Agent Approach

neers to develop these kinds of systems. In our proposal, first we define a knowledge life cycle model that, according to literature and our experience, ponders all the stages that a knowledge management system should give support to. Later, we describe the technology (software agents) that we recommend to support the activities of each stage. The chapter explains why we consider that software agents are suitable for this end and how they can work in order to reach their goals. Furthermore, a prototype that uses these agents is also described.

INTRODUCTION

In the last decades, knowledge management has captured enterprises’ attention as one of the most promising ways to reach success in this information era (Malone 2002). A shorter life- cycle of products, globalization, and strategic alliances between companies demand a deeper and more systematic organizational knowledge management. Consequently, one way to assess an organization’s performance is to determine how well it manages its critical knowledge.

In order to assist organizations to manage their knowledge, systems have been designed. These are called Knowledge Management Systems (KMS), defined by Alavi and Leidner (2001), as IT-based systems developed to support/enhance the processes of knowledge creation, storage/retrieval, transfer, and application.

However, developing KMS is a difficult task; since knowledge per se is intensively domain dependent whereas KMS often are context specific applications. Thus, reusability is a complex issue. On the other hand, the lack of sophisticated methodologies or theories for the extraction of reusable knowledge and reusable knowledge patterns has proven to be extremely costly, time consuming and error prone (Gkotsis, Evangelou et al. 2006). Moreover, there are several approaches towards KMS developing. For instance, the process/task based approach focuses on the use of knowledge by participants in a project or the infrastructure/generic system based approach focuses on building a base system to capture and distribute knowledge for use throughout the organization (Jennex 2005). On the other hand, before developing this kind of system it is advisable to study and understand how the transfer of knowledge is carried out by people in real life. However, when developing KMS developers often focus on the technology without taking into account the fundamental knowledge problems that KMS are likely to support (Hahn and Subramani 2000).

Different techniques have been used to implement KMS. One of them, which is proving to be quite useful, is that of intelligent agents (van Elst, Dignum et al. 2003). Software agent technology can monitor and coordinate events or meetings and disseminate information (Wooldridge and Jennings 1995). Furthermore, agents are proactive in the sense that they can take the initiative and achieve their own goals. The autonomous behavior of the agents is critical to the goal of this research since it can reduce the amount of work that employees have to perform when using a KM system. Another important issue is that agents can learn from their own experience. Consequently, agent systems are expected to become more efficient with time since the agents learn from their previous mistakes and successes (Maes 1994).

Because of these advantages different agent-based architectures have been proposed to support activities related to KM (Gandon 2000). Some architectures have even been designed to help in the development of KMS. However, most of them focus on a particular domain and can only be used under specific circumstances. What is more, they do not take into account the cycles of knowledge in order to use knowledge management in the system itself. For these reasons, in this paper we propose a generic model for developing KMS. Therefore, in section two we describe the model
Related Content

The Some of the MADM Method Behaviors Versus Incomparability
[www.igi-global.com/article/the-some-of-the-madm-method-behaviors-versus-incomparability/182277?camid=4v1a](www.igi-global.com/article/the-some-of-the-madm-method-behaviors-versus-incomparability/182277?camid=4v1a)

Culture as a Dynamic Capability: The Case of 3M in the United Kingdom
[www.igi-global.com/chapter/culture-dynamic-capability/20861?camid=4v1a](www.igi-global.com/chapter/culture-dynamic-capability/20861?camid=4v1a)

Would You Share?: Examining Knowledge Type and Communication Channel for Knowledge Sharing Within and Across the Organizational Boundary
[www.igi-global.com/article/would-you-share/62588?camid=4v1a](www.igi-global.com/article/would-you-share/62588?camid=4v1a)

Minimising Collateral Damage: Privacy-Preserving Investigative Data Acquisition Platform
[www.igi-global.com/article/minimising-collateral-damage/55801?camid=4v1a](www.igi-global.com/article/minimising-collateral-damage/55801?camid=4v1a)