Augmented Context-Based Conceptual User Modeling for Personalized Recommendation System in Online Social Networks

Ammar Alnahhas, Faculty of Information Technology Engineering, Damascus University, Syria
Bassel Alkhatib, Faculty of Information Technology Engineering, Damascus University, Syria

ABSTRACT

As the data on the online social networks is getting larger, it is important to build personalized recommendation systems that recommend suitable content to users, there has been much research in this field that uses conceptual representations of text to match user models with best content. This article presents a novel method to build a user model that depends on conceptual representation of text by using ConceptNet concepts that exceed the named entities to include the common-sense meaning of words and phrases. The model includes the contextual information of concepts as well, the authors also show a novel method to exploit the semantic relations of the knowledge base to extend user models, the experiment shows that the proposed model and associated recommendation algorithms outperform all previous methods as a detailed comparison shows in this article.

KEYWORDS
Knowledge Graph, Recommendation, Social Networks, User Modeling

INTRODUCTION

Online social networks are getting more attention nowadays, they grew rapidly in the last few years, and attracted many users, as they can communicate, share and get more information by using these networks.

As more people are engaged to the online social networks, huge amount of data is posted every day, millions of tweets on Twitter and posts on Facebook are generated causing an overwhelming stream of data. Social networks are widely used to share news, updates and events, but as the data is getting larger; users are more likely to miss important items that may be interesting to them, this issue rise the importance of building personalization solutions that can guide users to interesting content of social web including posts, people or pages.

In this paper we present a personalized recommendation system that helps users of social networks find the best textual content that matches their interest using semantic analysis of the text with help of a knowledge base. To identify the user interest, a conceptual user modelling methodology that exploits the contextual relations of concepts is introduced. As well as a recommendation algorithm

DOI: 10.4018/IJCINI.2020070101

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
that matches the user model with the content representation. There has been a series of work in this area, to our knowledge all of previous works that introduced conceptual models of social web users use named-entities to represent the interest of the users, whereas in our work we propose to represent the text as a series of concepts that contains the representation of words, phrases and entities in text, we present conceptual user model where users are mapped to concepts, and contextual conceptual user model where users are represented as a graph of contextually connected concepts. We also try to exploit the semantic relations of the knowledge graph to expand the user model, so we propose a learning-based approach that finds the importance of each semantic relation type in the field of recommendation. Our results compared with the state-of-the-art methods show that the proposed model effectively out-perform all other models.

This paper is structured as follows, Section 2 contains a detailed view of related work, Section 3 presents the problem definition and contribution, text representation method is explained in Section 4, in Section 5 we show the experiment setup, Section 6 shows the conceptual user model and Section 7 shows the contextual conceptual user model, Section 8 elaborates the model expansion approach, Section 9 presents the comparison of our models with previous models, and Section 10 concludes the paper.

RELATED WORK

Building recommendation systems for online social networks has attracted many researchers in the last few years, a few researchers aimed at studying content recommendation, but many user modelling techniques are used in other researches aiming at link, news or ‘who to follow’ recommendations. We can classify the researches in three different categories:

1. **Collaborative filtering**: Where items are recommended to a user by considering users with similar interests, or by considering similar items to items already user interested in;
2. **Statistical content based**: Where users are modelled according to the textual content of their items, the content is processed statistically like in IR systems, and items are recommended if its content is similar to the user model;
3. **Semantic analysis of content**: Where users are modelled according to the semantics extracted from textual contents of their interest, item are recommended if its content is semantically similar to the user model.

Collaborative Filtering Methods

The main approach of collaborative filtering is to use the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users (Su & Khoshgoftaar, 2009), so when two users share many interested items, we can predict interest in new items for one of them if the other is interested in them, item based collaborative filtering depends on the fact that if two items share the same user interests then new users who are interested in one of them is more likely interested in the other.

Many researches targeted the field of collaborative filtering to build recommendation systems for social networks, some researchers (Chen et al., 2012) propose to use collaborative ranking technique to find correlation between users and items so that if users post similar content to social network; similar items can be recommended for them in the future, while other researchers rely on social associations (Vosecky, Leung, & Ng, 2014) to build collaborative user model, or use ego networks (Sun & Zhu, 2013) to link users so that homophily between them can represent the collaboration. Similarly, a graph-theoretic model (Yan, Lapata, & Li, 2012) is proposed that ranks items and their authors according to the relations between them. Some researches use tags as the main source of collaboration, either by linking tags to users and items (Guy, Zwerdling, Ronen, Carmel, & Uziel,
On Foundations and Applications of the Paradigm of Granular Rough Computing
www.igi-global.com/article/foundations-applications-paradigm-granular-rough/1562?camid=4v1a