ABSTRACT

A decade of experience with research proposals as well as standardized query languages for the conventional Web and the recent emergence of query languages for the Semantic Web call for a reconsideration of design principles for Web and Semantic Web query languages. This chapter first argues that a new generation of versatile Web query languages is needed for solving the challenges posed by the changing Web: We call versatile those query languages able to cope with both Web and Semantic Web data expressed in any (Web or Semantic Web) markup language. This chapter further suggests that well-known referential transparency and novel answer-closedness are essential features of versatile query languages. Indeed, they allow queries to be considered like forms and answers like form-fillings in the spirit of the query-by-example paradigm. This chapter finally suggests that the decentralized and heterogeneous nature of the Web requires incomplete data specifications (or incomplete queries) and incomplete data selections (or incomplete answers); the form-like query can be specified without precise knowledge of the queried data, and answers can be restricted to contain only an excerpt of the queried data.

Keywords: query languages; query processing; RDF; rule languages; Semantic Web (architecture); visual query language; XML

INTRODUCTION

After a decade of experience with research proposals as well as standardized query languages for the conventional Web, and following the recent emergence of query languages for the Semantic Web a reconsideration of design principles for Web and Semantic Web query languages is called for.

The Semantic Web is an endeavor widely publicized in 2001 by an influential but also controversial article from Tim Berners-Lee, James Hendler, and Ora
The Semantic Web vision is that of the current Web which consists of (X)HTML and documents in other XML formats extended by metadata specifying the meaning of these documents in forms usable by both humans and computers.

One might see the Semantic Web metadata added to today’s Web documents as semantic indices similar to encyclopedias. A considerable advantage over paper-printed encyclopedias is that the relationships expressed by Semantic Web metadata can be followed by computers, very much like hyperlinks, and be used for drawing conclusions using automated reasoning methods:

For the Semantic Web to function, computers must have access to structured collections of information and sets of inference rules that they can use to conduct automated reasoning. (Berners-Lee et al., 2001, p. 000)

A number of formalisms have been proposed in recent years for representing Semantic Web metadata (e.g., RDF [Klyne et al., 2004], Topic Maps [ISO, 1999], and OWL [Bechhofer et al., 2004]). Whereas RDF and Topic Maps provide merely a syntax for representing assertions on relationships like “a text T is authored by person P,” schema or ontology languages such as RDFS (Brickley et al., 2004) and OWL allow one to state properties of the terms used in such assertions (e.g., that no person can be a text). Building upon descriptions of resources and their schemas, as detailed in the architectural road map for the Semantic Web (Berners-Lee, 1998), rules expressed in SWRL (Horrocks et al., 2004) or RuleML (Boley et al., 2002), for example, allow the specification of actions to be taken, knowledge to be derived, or constraints to be enforced.

Essential for realizing this vision is the integrated access to all kinds of data represented in any of these representation formalisms or even in standard Web languages such as (X)HTML, SVG. Considering the large amount and the distributed storage of data already available on the Web, the efficient and convenient access to such data becomes the enabling requirement for the Semantic Web vision.

It has been recognized that reasonably high-level, declarative query languages are needed for such efficient and convenient access, as they allow separation of the actual data storage from the view of the data that a query programmer operates on. This chapter presents a novel position on design principles for guiding the development of query languages that allow access to both standard and Semantic Web data. The authors believe that it is worthwhile to reconsider principles that have been stated almost a decade ago for query languages such as XML-QL (Deutsch et al., 1998) and XQuery (Boag et al., 2004), then agnostic of the challenges imposed by the emerging Semantic Web.

Three principles are at the core of this chapter:

- As discussed above, the same query language should provide convenient and efficient access to any kind of data expected to be found on the Semantic Web (e.g., to documents written in
Related Content

Data Linking for the Semantic Web
www.igi-global.com/chapter/data-linking-semantic-web/76176?camid=4v1a

ACRONYM: Context Metrics for Linking People to User-Generated Media Content
www.igi-global.com/article/acronym-context-metrics-linking-people/63643?camid=4v1a
An Adapted Ant-Inspired Algorithm for Enhancing Web Service Composition
www.igi-global.com/article/an-adapted-ant-inspired-algorithm-for-enhancing-web-service-composition/189770?camid=4v1a

Context-Aware Presentation of Linked Data on Mobile
www.igi-global.com/article/context-aware-presentation-of-linked-data-on-mobile/129762?camid=4v1a