In Defense of Ambiguity

Patrick J. Hayes, Institute for Human and Machine Cognition, USA
Harry Halpin, University of Edinburgh, UK

ABSTRACT

URIs, a universal identification scheme, are different from human names insofar as they can provide the ability to reliably access the thing identified. URIs also can function to reference a non-accessible thing in a similar manner to how names function in natural language. There are two distinctly different relationships between names and things: access and reference. To confuse the two relations leads to underlying problems with Web architecture. Reference is by nature ambiguous in any language. So any attempts by Web architecture to make reference completely unambiguous will fail on the Web. Despite popular belief otherwise, making further ontological distinctions often leads to more ambiguity, not less. Contrary to appeals to Kripke for some sort of eternal and unique identification, reference on the Web uses descriptions and therefore there is no unambiguous resolution of reference. On the Web, what is needed is not just a simple redirection, but a uniform and logically consistent manner of associating descriptions with URIs that can be done in a number of practical ways that should be made consistent.

Keywords: metadata; ontologies; semiotics; under data resource management-Web architecture; under software-data semantics

THE IDENTITY CRISIS ON THE WEB

One might imagine that there would be no problems of identification on the Web. After all, the Web seems to be about identifying and accessing Web pages. Yet the Web’s ambition goes beyond normal hypertext systems content with accessing documents, for it wishes to use its identification system to identify objects that aren’t even accessible via the Web. The ongoing problems and confusion that plague Web architecture follow from this goal. This is because there are two distinct relationships between names and things—reference and access.

The idea of a resource on the Web was from its outset universal: “A common feature of almost all the data models of past and proposed systems is something which can be mapped onto a concept of ‘object’ and some kind of name, address, or identifier for that object. One can therefore define a set of name spaces in which these objects can be said to exist. In order to abstract the idea of a generic object, the Web needs the concepts of the universal set of objects, and of the universal set of names or addresses of objects” (Berners-Lee, 1994). The claim is that a URI can identify anything, not just a Web page. If the Web is to fulfill its ambition of being a universal information space, then
the Web naturally has to stretch across to other information systems to objects one might want to access, like files through file transfer protocol or e-mail addresses through a mailto: URI scheme. These pose no philosophical problems as they are all streams of bits that happen to conform to different protocols.

Later, Berners-Lee and others attempted to define a resource as “anything that has identity” in RFC 2396 (1998). Even in this definition, a resource was defined as broader than just things that are accessible via the Web, since resources may be “electronic documents” and “images” but also “not all resources are network retrievable (e.g., human beings, corporations, and bound books in a library)” (Berners-Lee, Fielding, & Masinter, 1998). In the latest version, RFC 3986, the definition of resource is updated to state that “abstract concepts can be resources, such as the operators and operands of a mathematical equation, the types of a relationship (e.g., “parent” or “employee”), or numeric values (e.g., zero, one, and infinity)” (Berners-Lee, Fielding, & Masinter, 2005). So a resource is anything someone might want to identify with a URI, including things far outside the reach of the Web.

Most previous hypertext systems assumed that “resource” meant an accessible thing. This corresponds fairly accurately to the English meaning of resource, which is just a thing that can be used for support or help. Although Berners-Lee has always supported a wider role for URIs as “universal resource identifiers,” at first he could only get through IETF standards track a specification for “uniform resource locators” that was for a “resource available via the Internet” (Berners-Lee, Fielding, & Masinter, 1998). The end result of this saga of URNs and URLs merging into URIs is that on the Web there is a single universal identification scheme for both identifying accessible and non-accessible resources. In this regard, the Web is radically different from previous identification schemes. In other hypertext systems, one assumed that the unique identifiers were allowing links between accessible documents or some sort of file. Yet on the Web one can have a URI for the “Eiffel Tower in itself,” such as http://www.example.singandich.org/EiffelTower. This brings up a new type of problem for users, for if they access that URI, how do they know it identifies the Eiffel Tower itself and not just a Web page about the Eiffel Tower? Assuming it is useful to identify non-accessible things on the Web using URIs, should we distinguish between these two types of things and if so, how? Should a URI for “The Eiffel Tower itself” bear some special marking that makes it different from a URI that lets one access Web pages about the Eiffel Tower?

REFERENCE AND ACCESS

There are two distinct relationships between names and things: reference and access. The
Related Content

Automatically Integrating Heterogeneous Ontologies from Structured Web Pages
www.igi-global.com/article/automatically-integrating-heterogeneous-ontologies-structured/2836?camid=4v1a

Keyword Extraction Based on Selectivity and Generalized Selectivity
www.igi-global.com/chapter/keyword-extraction-based-on-selectivity-and-generalized-selectivity/196439?camid=4v1a

A Methodology for Effective Metadata Design in Earth Observation
www.igi-global.com/chapter/a-methodology-for-effective-metadata-design-in-earth-observation/175867?camid=4v1a
Hidden Markov Models for Context-Aware Tag Query Prediction in Folksonomies
www.igi-global.com/chapter/hidden-markov-models-context-aware/65693?camid=4v1a