Chapter XVI

LOGIC-Minimiser: A Software Tool to Enhance Teaching and Learning Minimization of Boolean Expressions

Nurul I. Sarkar, Auckland University of Technology, New Zealand
Khaleel I. Petrus, University of Southern Queensland, Australia

Abstract

Boolean algebra, minimization of Boolean expressions, and logic gates are often included as subjects in electronics, computer science, information technology, and engineering courses as computer hardware and digital systems are a fundamental component of IT systems today. We believe that students learn minimization of Boolean expressions better if they are given interactive practical learning activities that illustrate theoretical concepts. This chapter describes the development and use of a software tool (named LOGIC-Minimiser) as an aid to enhance teaching and learning minimization of Boolean expressions.
Learning Objectives

After completing this chapter, you will be able to:

- List and describe three main features of LOGIC-Minimiser.
- Explain how LOGIC-Minimiser can be used in the classroom to enhance teaching and learning Boolean expression minimization.
- Describe the Q-M algorithm for the minimization of Boolean expressions.
- Define the following key terms: Boolean expression, SOP, logic gate, logic minimization, and K-maps.

Introduction

It is often difficult to motivate students to learn minimization of Boolean expressions because students find the subject rather abstract and technical. A software tool (named LOGIC-Minimiser) has been developed that gives students a hands-on learning experience in minimizing Boolean expressions. LOGIC-Minimiser was developed in C language under MS Windows and is suitable for classroom use in introductory Boolean algebra courses. Based on user input (i.e., logic expression), the system displays the sum of product (SOP) functions as well as minimized logic gate diagrams. Test results demonstrate the successful implementation of LOGIC-Minimiser, and the simplicity of the user interface makes it a useful teaching and learning tool for both students and instructors. This chapter describes the development of LOGIC-Minimiser and its usefulness as an aid to teaching and learning minimization of Boolean expressions. The chapter concludes with a discussion of the strengths and weaknesses of LOGIC-Minimiser and its future development.

Background and Motivation

Boolean algebra, minimization of Boolean expressions, and logic gates are essential concepts included in electronics, computer science, information technology, and engineering. These concepts play a fundamental role in computer hardware and digital systems design. We believe that it is extremely important to incorporate practical demonstrations into these courses to illustrate theoretical
14 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage:

www.igi-global.com/chapter/logic-minimiser-software-tool-enhance/30435?camid=4v1


www.igi-global.com/e-resources/library-recommendation/?id=1

Related Content

The Impact of Web 2.0 Technologies on the Learning Experience of Students in Higher Education: A Review
www.igi-global.com/article/the-impact-of-web-20-technologies-on-the-learning-experience-of-students-in-higher-education/205548?camid=4v1a

Does Technology Uptake Convert to Effectiveness: Re-Evaluating E-Learning Effectiveness
Monika Mital (2010). *International Journal of Web-Based Learning and Teaching Technologies* (pp. 16-26).
www.igi-global.com/article/does-technology-uptake-convert-effectiveness/41964?camid=4v1a

Fostering Higher Knowledge Construction Levels in Online Discussion Forums: An Exploratory Case Study
Khe Foon Hew and Wing Sum Cheung (2010). *International Journal of Web-Based Learning and Teaching Technologies* (pp. 44-55).
www.igi-global.com/article/fostering-higher-knowledge-construction-levels/52598?camid=4v1a
Stepping over the Edge: The Implications of New Technologies for Education
www.igi-global.com/chapter/stepping-over-edge/45034?camid=4v1a