Chapter XI

Ontological Engineering in Pervasive Computing Environments

Athanasios Tsounis, University of Athens, Greece
Christos Anagnostopoulos, University of Athens, Greece
Stathes Hadjiethymiades, University of Athens, Greece
Izambo Karali, University of Athens, Greece

Abstract

Pervasive computing is a broad and compelling research topic in computer science that focuses on the applications of technology to assist users in everyday life situations. It seeks to provide proactive and self-tuning environments and devices to seamlessly augment a person’s knowledge and decision making ability, while requiring as little direct user interaction as possible. Its vision is the creation of an environment saturated with seamlessly integrated devices with computing and communication capabilities. The realisation of this vision requires that a very large number of devices and software components interoperate seamlessly. As these devices and the associated software will pervade everyday life, an increasing number of software and hardware providers will deploy functionality in
pervasive computing environments (PCE). That poses a very important interoperability issue, as it cannot be assumed that the various hardware and software components share common communication and data schemes. We argue that the use of Semantic Web technologies, namely the ontologies, present a intriguing way of resolving such issues and, therefore, their application in the deployment of PCE is a highly important research issue.

Introduction

The vision of pervasive computing presents many technical issues, such as scaling-up of connectivity requirements, heterogeneity of processors and access networks and poor application portability over embedded processors. These issues are currently being addressed by the research community; however the most serious challenges are not technological but structural, as embedded processors and sensors in everyday products imply an explosion in the number and type of organisations that need to be involved in achieving seamless interoperability (O’Sullivan, 2003). In a typical pervasive computing environment (PCE) there will be numerous devices with computing capabilities that need to interoperate (Nakajima, 2003). These devices might be of different vendors and may operate based on different protocols. Therefore, the key issue in deploying a PCE is achieving application level interoperability. The complexity of such a venture is considerable. It is extremely difficult to reach agreements when the players involved expand from all the hardware and software providers (e.g., IBM, HP, Microsoft) to all the organisations that will equip their products with computing and communication capabilities (e.g., coffee machines, refrigerators). Therefore, we cannot rely on shared a priori knowledge based on commonly accepted standards to resolve the issue. Instead, software components must adapt to their environment at runtime to integrate their functionality with other software components seamlessly. An intriguing way of resolving this issue is the use of semantics, namely the use of Semantic Web technologies such as ontologies. In this manner, software entities provide semantically enriched specifications of the services that they provide and the way they should be invoked. Moreover, the data that are exchanged are also semantically enriched, enabling the entities to reason and make effective decisions. This is particularly important for the description of contextual information, which is of main interest in a PCE. As context we identify any information that is, directly or indirectly, associated with any entity in the environment.

The novelty of the Semantic Web is that the data are required to be not only machine readable but also machine understandable, as opposed to today’s Web which was mainly designed for human interpretation and use. According to Tim
Related Content

Sarcastic Sentiment Detection Based on Types of Sarcasm Occurring in Twitter Data
[www.igi-global.com/article/sarcastic-sentiment-detection-based-on-types-of-sarcasm-occurring-in-twitter-data/189766?camid=4v1a](www.igi-global.com/article/sarcastic-sentiment-detection-based-on-types-of-sarcasm-occurring-in-twitter-data/189766?camid=4v1a)

OnGIS: Geospatial Data Integration Using Semantic Technologies and Query Containment
[www.igi-global.com/article/ongis/217010?camid=4v1a](www.igi-global.com/article/ongis/217010?camid=4v1a)

Marefa: Turning Publishers Catalogs' Data Into Linked Data
[www.igi-global.com/article/marefa/206258?camid=4v1a](www.igi-global.com/article/marefa/206258?camid=4v1a)
SEMCON: A Semantic and Contextual Objective Metric for Enriching Domain Ontology Concepts
www.igi-global.com/article/semcon/153665?camid=4v1a