Human Factors Research on Data Modeling: A Review of Prior Research, An Extended Framework and Future Research Directions

HEIKKI TOPI, Bentley College, USA
V. RAMESH, Indiana University, USA

This study reviews and synthesizes human factors research on conceptual data modeling. In addition to analyzing the variables used in earlier studies and summarizing the results of this stream of research, we propose a new framework to help with future efforts in this area. The study finds that prior research has focused on issues that are relevant when conceptual models are used for communication between systems analysts and developers (Analyst – Developer models) whereas the issues important for models that are used to facilitate communication between analysts and users (User – Analyst models) have received little attention and, hence, require a significantly stronger role in future research. In addition, we emphasize the importance of building a strong theoretical foundation and using it to guide future empirical work in this area.

INTRODUCTION

Conceptual data modeling continues to be an integral part of the foundation on which information systems are built. Depending on the development methodologies that are used for a particular project, the terms and methods used for conceptual data modeling vary, but in practice, a clear majority of methodologies used for systems development include a set of tools and methods for modeling data at the conceptual level. Therefore, it is not surprising that research in IS and its reference disciplines has shown a significant interest in various aspects of data modeling for the past 20 years. The focus of this paper is on research that examines the usability of various conceptual data modeling approaches, i.e., research that investigates human factors issues in conceptual data modeling. We review and analyze this literature and suggest several new directions for further research.

BACKGROUND

The concept of data modeling has been used with a variety of different meanings within various areas of study and practice. However, within the organizational context the core idea underlying all the definitions is the same: A data model is used for describing entities and their relationships within a real world domain. For example, McFadden, Hoffer, and Prescott (1999) define a data model as “an abstract representation of the data about entities, events, activities, and their associations within an organization.” A data model is an abstraction and a simplification of the domain it describes and thus, it always represents a limited part of reality.

The main focus of this paper, conceptual data modeling, requires further clarification. Based on the ANSI/SPARC definition, a conceptual data model is any model that is independent of the underlying hardware and software. This means that using this definition, models created using formalisms ranging from the relational model to the semantically rich variants (Teorey, Yang, & Fry, 1986) of Entity-Relationship modeling (Chen, 1976; Hull & King, 1987) can be considered to be at the conceptual level. A more restrictive definition of a conceptual model can be found in Batra and Davis (1992). They define a conceptual model as one that is capable of capturing the structure of the database along with the semantic constraints into a model that is easy to under-
stand, does not contain implementation details, and can be
used to communicate with users. A key criteria in the above
definition is the independence of modeling from the imple-
mentation technology. This means that in order to be catego-
rized as a conceptual model, the representation must not be
dependent on the characteristics of the database technologies
available (e.g., relational, object-oriented, object-relational,
network, or hierarchical).

We believe that both of the definitions presented above
are, however, somewhat misleading because a true conceptual
data model should capture the essential data characteristics of
the domain of interest, and not necessarily the structure of the
database. Thus, we define a conceptual data model as a set of
constructs that can be used to create an abstraction of reality,
i.e., a representation that is capable of capturing the data
oriented (as opposed to process oriented) aspects of a domain
of interest in a manner that is unambiguous and easy to
understand for both designers and users alike. Note that this
definition does not have any references to a database struc-
ture. This is because we believe that not everything captured
in a representation created using a conceptual data model will
(or needs to) be reflected in a database or the eventual system
being developed.

Based on the above definition of conceptual data mod-
eling, one can synthesize at least four different uses for a
conceptual data model (Batra, Hoffer, & Bostrom, 1990;
Cambell, 1992; Juhr & Naumann, 1985): 1) a communication
tool between analysts and users for the discovery (elicitation
and representation) and validation stages of the systems
analysis process, 2) a formal conceptual foundation for or-
ganizational information systems at various levels (a common
accepted model of reality and a communication tool between
IS professionals, e.g., analysts and developers), 3) a founda-
tion for applications developed by end users, and 4) an
essential part of the system documentation for the mainte-
nance of the system.

The main focus of this paper is to examine research on
the human factors issues in data modeling, i.e., research that
employs social science methods such as laboratory experi-
ments to evaluate and improve the usability of the systems.
Batra and Srinivasan define usability as “the ability of the user
to represent a problem in a computing environment and
effectively work with that representation” (1992, p. 395).
Thus, two important research questions of human factors
research on data modeling have traditionally been as follows:
1) how do the characteristics of the available tools affect
users’ ability to succeed in their tasks (i.e., what is the level
of usability of the tools)?, and 2) how satisfied are the users with
the tools?

REVIEW OF PRIOR RESEARCH

In this section, we review the previous human factors
research on data modeling. This review is based on a careful
analysis of existing studies published in academic journals or
in the Proceedings of the ICIS conference that have empiri-
cally evaluated some aspect of the usability of conceptual data
modeling tools and methods. After a comprehensive search,
we identified 27 articles published after (and including)
Broseys and Shneiderman’s (1978) early work in 1978. A
summary table of these studies is presented in Appendix A.
The table includes a description of the independent variables
(IV), dependent variables (DV), research tasks, and the most
important results.

First, we will discuss the typical research variables
used in these studies, and then, review the most important
empirical findings.

Variables of Interest in Empirical Studies

Research framework. Figure 1 includes a schematic
representation of the research framework that has been used
either explicitly (as by Batra et al., 1990) or implicitly in many
of the earlier studies. *Human* refers to the individual level
factors related to the characteristics of the individuals who
perform the data modeling tasks, *Data Model* is used in this
context to describe the differences between the data modeling
formalisms, and *Task* refers to the characteristics of the tasks
of interest related to data models, such as model creation,
comprehension, or validation. The model indicates a recipro-
cal relationship between Human, Data Model, and Task,
which all, in turn, have an impact on the quality of the resulting
model, i.e., (human) *Performance* in the data modeling
task. Variables in the Human, Data Model, and Task catego-
ries have been used in earlier studies as independent and
control variables, as indicated in the discussion below, and
Performance is a natural dependent variable in the studies.

Independent variables. The most frequently used inde-
ependent variable in the earlier studies has been the data
modeling approach or *data model*, as it is called by, for
example, Batra and Davis (1992) and Navathe (1992) and in
the research framework in Figure 1. In early research, Brosey
and Shneiderman (1978) compared hierarchical and rela-
tional data models, whereas several later studies have com-
pared different types of semantic and relational data models
(Amer, 1993; Batra & Antony, 1994; Batra et al., 1990;

![Figure 1: Widely used framework for human factors research on data modeling (see, for example, Batra et al., 1990)](image-url)
Related Content

Empirical Assessment of Factors Influencing Success of Enterprise Resource Planning Implementations
www.igi-global.com/article/empirical-assessment-factors-influencing-success/3377?camid=4v1a

Schema Evolution Models and Languages for Multidimensional Data Warehouses
www.igi-global.com/chapter/schema-evolution-models-languages-multidimensional/20695?camid=4v1a

UB2SQL: A Tool for Building Database Applications Using UML and B Formal Method
www.igi-global.com/chapter/ub2sql-tool-building-database-applications/4295?camid=4v1a

An Integrated Query Relaxation Approach Adopting Data Abstraction and Fuzzy Relation
www.igi-global.com/chapter/integrated-query-relaxation-approach-adopting/63674?camid=4v1a