Scanning and Image Processing System (SIPS) for Medication Ordering

STEPHEN L. CHAN, Hong Kong Baptist University, Hong Kong

This paper presents a physician order entry system in the ward (for medication prescriptions) by using scanning and image processing. Important design and operational requirements are presented. Then the scanning and imaging processing system (SIPS) is described. SIPS integrates different information technologies including scanning, bar code and other marks recognition, intelligent image capturing, server database access and retrieval, and network communication and printing. SIPS uses specially designed order forms for doctors to write orders that are then scanned into the computer that performs recognition and image processing. The resulting orders, including doctor’s handwritten images and other order information, are transmitted to the destinations electronically. SIPS reduces human effort (and errors). We observe that SIPS is an innovative use of information technology to meet the needs of a hospital that requires paper-and-pen operations. SIPS can be extended to meet other operational needs as an alternate input method.

INTRODUCTION

This paper presents a physician ordering entry system in the ward (for medication prescriptions) by using scanning and image processing. Important design and operational issues that need to be considered by developers of similar end-user computer systems are presented. Then the scanning and imaging processing system (SIPS) is described. SIPS was developed for the Hong Kong Baptist Hospital (HKBH), Kowloon, Hong Kong, and has been in successful operation for over three years in the hospital.

The development of SIPS was based on end-user directed requirements. SIPS makes use of and integrates different information technologies, including scanning, bar code and other marks recognition, intelligent image capturing, server database access and retrieval, and network communication and printing. The use of SIPS led to the implementation of new operational procedures, resulting in improved quality healthcare delivery in the ward and increased productivity of the medical personnel.

The End-User Context

The end-user context of an end-user computer system is important. A recent study can be found in establishing the importance of the end-user context in identifying requirements in end-user systems development (Gammack, 1999) and in measuring end-user computing success (Shayo, Guthrie, Igbaria, 1999). As discussed in the study by Komito (1998) of the use of a system of electronic files to replace paper files, the end-user considerations were identified as the difficulties for the transition. Paper documents are perceived to be ‘information rich’, providing control of information for occupational status and position. As a result, there is a perceived need for the user to defend ‘occupational boundaries,’ thus discouraging the use of electronic information. Indeed, in our effort to computerize ward procedures, we found that the end-user context was very crucial in determining the available technical options. More specifically, in developing a medication ordering system in HKBH, we have the following real-life scenario.

It is a 700-bed private general hospital. The ordering of medication by the doctors is dominated by the practice of using the traditional paper-and-pen operations. For several reasons, it is considered not possible to replace this traditional way and to introduce a direct physician order entry (POE) method in which the doctors enter the medication orders directly into the computer. Firstly, there is a large number (1,000+) of visiting doctors. These doctors have very different backgrounds and their age range spans over 40 years. Further-
more, some of the doctors visit the Hospital only occasionally when their patients are admitted to the Hospital. Therefore, it is not practical to hold training classes for these doctors. Even if they are trained, they may not be able to remember how to use a POE system in their occasional visits. Secondly, the doctors are specialists in their own medical fields and many are not proficient in the use of the computer. For some individuals, even their typing skills are in doubt. (Typing skills were recognized as the biggest stumbling block in one hospital computerization effort by Blignaut and McDonald, 1999). Nevertheless, their aim is in the practice of their medical specialties and they would not see the need to learn to use the computer. Thirdly, many of the computer works are viewed as administrative and are considered to be the responsibilities of the Hospital. Some doctors would be resistant to spend time to learn and perform the tasks that are perceived as administrative and the responsibilities of the Hospital.

Furthermore, there are also pragmatic considerations. Doctors visit their patients in the Hospital outside the office hours of their clinics. They do not normally spend a lot of time at the Hospital and when they are at the Hospital, their main concern is with the patients. They would prefer to use their most proficient (and efficient) way to place their medication orders, which is the paper-and-pen method.

For such hospitals under such situational necessity and with such pragmatic considerations, it is therefore necessary to assume the paper-and-pen method as given. Nevertheless, such hospitals are to look for effective and efficient ways of handling the remaining business processes of filling doctors’ medication orders.

Medication Ordering Overview

We break down the operational process of medication ordering into four sub-processes: Order Capturing, Order Sending, Order Receiving, and Order Processing. We summarize in Figure 1 our overview of several methods. Traditionally, our ordering method has been manual. Orders originate from physicians. These orders are captured by paper-and-pen operations performed by the physicians. Simply, they write down their orders on paper that may be specially designed forms and may be of multiple copies. A hospital staff member would then hand carry these paper orders to the Pharmacy, and the Pharmacy staff would receive the paper orders and dispense medication accordingly.

As facsimile machines are available, there are hospitals that use an “improved” manual method. With this method, the order capturing process continues to be manual, using paper and pen. However, the hospital staff sends the orders and the Pharmacy staff receives the orders by using the facsimile machine.

The computer-based Direct Physician Order Entry (POE) System has been put forth for over 20 years (Sittig and Stead, 1994). Based on the above breakdown of operational sub-processes, the direct POE System would require physicians to use the computers to enter their orders into the computer database. The order would then be transmitted via the network for the Pharmacy staff to receive the orders. One way is for the order to be printed at the Pharmacy printer, with relevant

Figure 1. Methods of Order Entry Overview

<table>
<thead>
<tr>
<th>Method</th>
<th>Order Capturing</th>
<th>Order Sending</th>
<th>Order Receiving</th>
<th>Order Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Manual</td>
<td>Paper and Pen Operations by Physicians</td>
<td>Manual Delivery by Hospital Staff</td>
<td>Manual Receipt by Pharmacy Staff</td>
<td>Medication Dispensing by Pharmacy Staff</td>
</tr>
<tr>
<td>Improved Manual</td>
<td>Paper and Pen Operations by Physicians</td>
<td>Delivery by Hospital Staff via Fax</td>
<td>Fax Printing at Pharmacy Fax Machine</td>
<td>Medication Dispensing by Pharmacy Staff</td>
</tr>
<tr>
<td>Direct Physician Order Entry</td>
<td>Computer Entry by Physicians into Database</td>
<td>Computer Processing of Database Information for Network Printing</td>
<td>Order Printing at Pharmacy Printer</td>
<td>Medication Dispensing by Pharmacy Staff with Database Information</td>
</tr>
<tr>
<td>Order Scanning and Imaging System</td>
<td>Paper and Pen Operations by Physicians</td>
<td>Computer Scanning of Orders at Ward into Database & Information Processed for Network Printing</td>
<td>Order Printing at Pharmacy Printer</td>
<td>Medication Dispensing by Pharmacy Staff with Database Information</td>
</tr>
</tbody>
</table>