Towards a Semiotic Metrics Suite for Product Ontology Evaluation

Joerg Leukel, University of Hohenheim, Germany
Vijayan Sugumaran, Oakland University, USA

ABSTRACT

In recent years, product ontology has been proposed for solving integration problems in product-related information systems such as e-commerce and supply chain management applications. A product ontology provides consensual definitions of concepts and inter-relationships being relevant in a product domain of interest. Adopting such an ontology requires means for assessing their suitability and selecting the “right” product ontology. In this article, the authors (1) propose a metrics suite for product ontology evaluation based on semiotic theory; and (2) demonstrate the feasibility and usefulness of the metrics suite using a supply chain model. The contribution of our research is the comprehensive metrics suite that takes into account the various quality dimensions of product ontology.

Keywords: Electronic Commerce, Metrics, Ontologies, Ontology Quality, Supply Chain Management

INTRODUCTION

Product-related information is of paramount importance in many interorganizational applications, since it concerns goods and services being procured, manufactured and sold to customers. Due to the involvement of multiple organizations, there is a need for integrating product-related information, e.g., by standardization or mediation. In the past years, product ontology has attracted both industry and academia because of its potential contribution to solving integration problems (Shim & Shim 2006). A product ontology provides, at least to some extent, consensual definitions of concepts and inter-relationships between these concepts in a product domain of interest. Most product ontologies define a hierarchy of product classes and respective properties for describing product instances. Such ontologies may support finding and comparing products being offered by multiple suppliers and described in distributed data sources, or allow for benchmarking the procurement activities of organizational units (Doring et al., 2006). Ontology users are required to annotate their product instance data accordingly.

Product ontologies have already emerged in diverse industries and for various tasks (Park et al., 2008). However, assessing the quality and suitability of a given product ontology, i.e., to what degree it actually meets user requirements, remains a critical question for potential ontology adopters. This question is...
the focus of ontology evaluation, which aims at providing metrics reflecting the ontology’s quality and suitability. There is great difficulty in determining what elements of quality to evaluate. In other words, what factors should be considered in evaluating product ontology quality? Current research yields a number of approaches, metrics, and tools for automatically evaluating ontologies (Garcia-Castro et al., 2007; Hartmann, 2005). However, most of this research originates from the Semantic Web arena, and therefore relies mainly on the expressiveness of ontology languages such as DAML (DARPA Agent Markup Language) and OWL (Ontology Web Language); hence their scope is constrained by these languages and does not take the specific setting of product ontology into account.

Very often, an ontology is regarded as an artifact used by a community as a common vocabulary without considering the organizational properties of the respective community and thus the inter-relations within the community (Zhdanova et al., 2007). For example, a community that often uses product ontologies is made of entities belonging to a supply chain. A supply chain is a system of entities participating in producing, transforming, and distributing goods and services from supply to demand. A single product ontology is thus used within supply chains and determining its quality and suitability has to consider the supply chain characteristics, e.g., by distinguishing different roles such as manufacturer and distributor. A major trend affecting supply chains is individualization, caused by customers demanding individualized products, which are tailored to their specific needs (e.g., custom-made products) (Coates, 1995) (Kim, 2008). For instance, enabling customers to order custom-made shoes via an e-commerce application does not only concern the e-commerce firm but also the stakeholders in the respective supply chain (e.g., manufacturer and its suppliers). Here, a product ontology may help provide a common terminology and means of describing products along the entire supply chain.

In the context of supply chain and individualization, a product ontology should emphasize the importance of quality metrics that allow the assessment of product complexity in terms of richness of product description and product structure, and how the final product is composed of individual parts. Current evaluation metrics do not take these factors into account: Domain-independent metrics are not able to exploit the domain characteristics (e.g., Yao et al. 2005), whereas domain-specific evaluation metrics regard products as single and atomic items without considering existing inter-relations that arise due to supply chain structures and customer requirements (e.g., Hepp et al. 2007). To overcome this limitation, we address product ontology evaluation on a broader scale by taking a semiotic perspective. Semiotics studies the properties of signs; for our purposes, it can provide a theoretical basis for distinguishing generic categories of quality. We define evaluation metrics based on Stamper’s et al. (2000) semiotic framework and adopt the domain-independent semiotic metrics suite proposed by Burton-Jones’ et al. (2005).

The objectives of this research are to: (1) develop a semiotic set of metrics that allow for assessing the quality of product ontologies, and (2) apply the metrics to a commonly available product ontology to demonstrate the feasibility and usefulness of the metrics suite. The contribution of this research is the comprehensive metrics suite that takes into account the various quality dimensions of product ontologies. A preliminary study of semiotic metrics for product ontology evaluation can be found in (Leukel & Sugumaran, 2007). The contribution of this research is that the current work adapts the metric suite developed by Burton-Jones et al. (2005) to the product domain in the context of supply chain management to determine which metrics are applicable and how they relate to the existing work in the product domain ontology. We map the metrics developed in both streams of research and develop a unified set of metrics for the product ontology domain.

The rest of the article is organized as follows. The next section defines the basic model
Related Content

Application of Meta-Models (MPMR and ELM) for Determining OMC, MDD and Soaked CBR Value of Soil
www.igi-global.com/chapter/application-of-meta-models-mpmr-and-elm-for-determining-omc-mdd-and-soaked-cbr-value-of-soil/173375?camid=4v1a

Mindfulness and HCI
Jacek Sliwinski (2019). Handbook of Research on Human-Computer Interfaces and New Modes of Interactivity (pp. 314-332).
www.igi-global.com/chapter/mindfulness-and-hci/228534?camid=4v1a

Device-Free Indoor Localization Based on Ambient FM Radio Signals
Andrei Popleteev and Thomas Engel (2014). International Journal of Ambient Computing and Intelligence (pp. 35-44).
www.igi-global.com/article/device-free-indoor-localization-based-on-ambient-fm-radio-signals/109627?camid=4v1a
Surface Modelling Using Discrete Basis Functions for Real-Time Automatic Inspection