Chapter 13
Educational Technoethics
Applied to Career Guidance

Pilar Alejandra Cortés Pascual
University of Zaragoza, Spain

ABSTRACT

Educational orientation should be set within a specific socio-historical context, which is nowadays characterized by the Society of Information. From this starting point, we think that the understanding of both an ethical analysis of technology as well as of the means of communication, which individuals will have to deal with in their professional development, must be considered as content linked to professional orientation. This idea becomes more definite in the concept of educational technoethics and it is studied from two parameters: the intrinsic values that technology and the means of communication include (the aim of technoethics) and their use as mediators of ethical values (means of technoethics). Therefore, the proposal that is currently being implemented in the project “Observation Laboratory on Technoethics for Adults” (LOTA) as well as its implications for professional orientation are concisely presented from both points of view. The present text is a review and update of a previously published article (Cortés, 2006).1

To Pedro, my brother and partner of athletics and life

INTRODUCTION

The information society entails lifelong training in general professional competencies and, in certain cases, in those specific to information and communication technologies (ICTs). Of course, it is true that due to the resources they provide technologies are being employed to search for employment and
training, especially via web pages and some online and computer programs. As part of its aims and contents careers guidance therefore includes finding out about (knowledge guidance) and knowing how to use (skills guidance) technological resources and means of communication for work-related choices and adaptation (Cogoi, Sobrado, Hawthorn, R. and Korte, 2005; Hartley and Almuhaidib, 2007). In particular, with regard to the IAEVG’s international competencies (2003) for educational and vocational guidance practitioners with regard to career development and placement, both categories are linked to careers guidance, and although they suggest use of computer and networked resources for said field (skills), our understanding is that the attitudinal and capacity component of ICTs that we are adding here could also feature.

These relationships between ICTs and careers guidance are necessary, but the inter-relationship of a third component is proposed: ethical values. In view of the socio-contextual factors framing the current educative panorama, such as post-modern thinking and the knowledge and information society, it is necessary to study the triangle formed by careers guidance, education in values and technology. In other words, if we talk about the space formed by this trio of variables it is because society itself demands that we do so, and, in educational terms, we will need to come up with a response. In this respect, in our opinion the relationship between careers guidance, education in values, and technology involves two lines of study: the first involving the reinforcement of career values demanded by the present knowledge and technology society (Cortés, 2006), and the second dealing with technoethics as a component of careers guidance (advice on attitudes and capacities). That is, career guidance has to intervene, assess, advise, programme or provide a response to a consultation in three directions: knowing about ICTs, knowing how to use ICTs and having the right attitude to ICTs.

TECHNOICTS VERSUS EDUCATIONAL AND CAREER GUIDANCE

In this section we will consider the last direction, that is to say academic and professional guidance on the ethical contents entailed by use of technologies, in other words, guidance on technoethics. We shall commence with educational technoethics, a concept we developed in previous works (Cortés, 2005a; 2006) and which here we also integrate within the careers guidance field. A significant part of the research undertaken with respect to educational technology and means of social communication focuses on the ‘what’ and ‘how’ of their existence and use, but there is a lack of works that include an axiological dimension. Nevertheless, Grill (1997) argues that the first thing a professional should do is look for the ‘why’ of things from attitudinal perspectives, and states that technology in itself is not a problem, but rather technopolism understood as the ethical changes that become the cause of problems such as, for example, addictive behaviour at work vis a vis technology, or excessive pressure from use of technology in work environments.

The need to axiologically analyse educational technologies in careers guidance is stressed in order to meet full training and educational needs in society both at present and in the future. As Cortina (2001) states, there is a need for an ethic of co-responsibility to guide the current social process and one of IT globalization so that this technical progress serves human beings, without foregoing an ethics of minimum values, which for Cortina (1998) is represented by freedom, solidarity, equality, responsibility and honesty. And it is true that technology and the means of communication for social communication require an ethical analysis in order that they can be employed suitably and coherently, as emphasised by others including Hawkrinde (1991), Nichols (1994), Postman (1995), Sunstein (2003), and Ortega.
Related Content

Addressing the Politics of Accreditation in Engineering Education: The Benefits of Soft Systems Thinking
www.igi-global.com/article/addressing-politics-accreditation-engineering-education/55873?camid=4v1a

INDUSTRIAL TRAINING IN ENGINEERING EDUCATION IN SPAIN
www.igi-global.com/chapter/industrial-training-engineering-education-spain/53290?camid=4v1a

CSRP: System Design Technology of Training Information Support of Competent Professionals
www.igi-global.com/chapter/csrp/210312?camid=4v1a

Teaching “Design-for-Corrosion” to Engineering Undergraduates: A Case Study of Novel Ni-B Coatings for High Wear and Corrosive Applications
www.igi-global.com/chapter/teaching-design-for-corrosion-to-engineering-undergraduates/127436?camid=4v1a