Web Services in Distributed Information Systems: Availability, Performance and Composition

Xia Zhao, University of Bedfordshire, UK
Tao Wang, University of Bedfordshire, UK
Enjie Liu, University of Bedfordshire, UK
Gordon J. Clapworthy, University of Bedfordshire, UK

ABSTRACT

Distributed information systems are growing rapidly in response to the improvement of computer hardware and software and this is matched by the evolution of the technologies involved. This article focuses mainly on Web Services technology and discusses related technical issues including availability, performance and composition. It also introduces Grid, agents and Semantic Web technologies that can work together with Web Services to serve different business goals.

Keywords: Distributed Information Systems, Service Availability and Performance, Service Composition, Web Services

INTRODUCTION

Distributed information systems are becoming more popular as a result of improvements in computer hardware and software, and there is a commensurate rise in the use of the associated technologies. Because of the increasing desire for business-to-business (B2B) communication and integration, technologies such as Service-Oriented Computing (SOC), Semantic Web, Grid, Agents/Multi-agents, peer-to-peer, etc., are receiving a high level of interest nowadays.

As a part of distributed information systems, web information systems play an important role in the modern, ubiquitous Internet world and the applicability of Web Services as a particular implementation of SOC has been widely recognized for current B2B integration (e.g. e-commerce, e-government and e-healthcare).

However, building all aspects of Web Services comprehensively needs further improvement, for instance, Quality of Service (QoS) has yet to be properly addressed. Likewise, the detection of service availability to achieve self-healing in the invocation process, service reuse, how best to define atomic services, and
service composition are all issues that urgently require more research.

Meanwhile, it should be noted that Web Services play only a partial role in evolving distributed information systems. With the development of future computer hardware, software and business requirements, many other technologies will probably emerge that will serve particular business goals better. Therefore, much recent research has been focusing not only on individual technologies in distributed systems, but also on the possibility of combining currently available technologies to improve business outcomes.

In this article, we concentrate mainly on Web Services and technical issues associated with current Web Services standards, but we also give a brief overview of three other distributed technologies, namely Grid, agents and Semantic Web, which can work with Web Services. Thus, it concentrates initially on the background of services in distributed information systems, then it introduces Grid, agent and Semantic Web technologies. After that, the article discusses several technical aspects of Web Services in current distributed information systems, in particular, general Web Service availability and performance issues and the possibility of combining agent technology and Web Services to provide improved understanding of service availability. We then introduce JSON (JavaScript Object Notation), which may provide an alternative to current approaches that will deliver better Web Service Performance and discuss service composition, illustrating it with an implementation from the EU Living Human Digital Library (LHDL) project.

WEB SERVICES AND RELATED TECHNOLOGIES IN DISTRIBUTED INFORMATION SYSTEMS

Internet applications are developed and hosted by many different organizations, and customers from all over the world access them via the Internet from their desktops, or possibly from hand-held devices, such as a PDA or mobile phone. Originally, Internet applications referred to activities such as web browsing, FTP, and email. More recently, they have also included more advanced applications that are generally referred to as services. These mirror our real-world business activities in the cyber world.

Let us take a ticket-booking system as an example. The processes may include: the initial search for the right ticket, using criteria such as price, timing, etc; the actual booking, which will include some form of payment process which itself may involve authentication processes such as a credit check by the credit-card company; then various forms of after-sales service, such as notifications a few days before travel, etc. In the real world, all the services may be provided by different specialist companies and achieved by human interaction, using their knowledge and intelligence. In the cyber world, these actions are achieved by so-called software services. To avoid continually having to rebuild services, there has been a trend towards using “atomic” services as building blocks from which to construct more complex services.

In open distributed systems, independent components cooperate with each other in order to achieve a goal. Apart from SOC, Grid technology and agent technology are the most widely used technologies for developing distributed systems. In this article, the authors do not offer a syntactic classification of the technologies, but rather, discuss the problem from a developer’s standpoint.

Web Services

Web Services are emerging as a promising technology for building distributed applications. A Web Service is a software system that is designed to support interoperable machine-to-machine interaction over a network. As one instantiation of Service-Oriented Architecture (SOA), they have the property of being loosely-coupled, open-standard, language- and platform-independent. “Loosely-coupled” implies that service providers can modify backend functions while retaining the same interface to
14 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage:
www.igi-global.com/article/web-services-distributed-information-systems/39039?camid=4v1

www.igi-global.com/e-resources/library-recommendation/?id=2

Related Content

Managing Inconsistencies in Data Grid Environments: A Practical Approach
Ejaz Ahmed, Nik Bessis, Peter Norrington and Yong Yue (2012). Evolving Developments in Grid and Cloud Computing: Advancing Research (pp. 303-316).
www.igi-global.com/chapter/managing-inconsistencies-data-grid-environments/62000?camid=4v1a

Optimization and Management of Resource in Utility Computing
www.igi-global.com/chapter/optimization-and-management-of-resource-in-utility-computing/139837?camid=4v1a
Enhancing the Grid with Multi-agent and Semantic Capabilities
www.igi-global.com/chapter/enhancing-grid-multi-agent-semantic/58752?camid=4v1a

A Transformation Technique for Scheduling Broadcast Programs of Multiple-Item Queries
www.igi-global.com/article/transformation-technique-scheduling-broadcast-programs/74168?camid=4v1a