Spam Image Clustering for Identifying Common Sources of Unsolicited Emails

Chengcui Zhang, University of Alabama at Birmingham, USA
Xin Chen, University of Alabama at Birmingham, USA
Wei-Bang Chen, University of Alabama at Birmingham, USA
Lin Yang, University of Alabama at Birmingham, USA
Gary Warner, University of Alabama at Birmingham, USA

ABSTRACT

In this article, we propose a spam image clustering approach that uses data mining techniques to study the image attachments of spam emails with the goal to help the investigation of spam clusters or phishing groups. Spam images are first modeled based on their visual features. In particular, the foreground text layout, foreground picture illustrations and background textures are analyzed. After the visual features are extracted from spam images, we use an unsupervised clustering algorithm to group visually similar spam images into clusters. The clustering results are evaluated by visual validation since there is no prior knowledge as to the actual sources of spam images. Our initial results show that the proposed approach is effective in identifying the visual similarity between spam images and thus can provide important indications of the common source of spam images. [Article copies are available for purchase from InfoSci-on-Demand.com]

Keywords: Botnet; Clustering; Computer Forensics; Cybercrime; Data Mining; Spam Image

INTRODUCTION

Spamming is a problem that affects people all over the world. Spam is an unsolicited email which has been sent to many people. There can be legal spam, where the sender gave proper contact information and also has an option to no longer receive the messages. However, in almost all situations, spam is illegal. It is an unsolicited mail
that the recipient did not ask to receive and
did not give the sender permission to send.
Spam falsifies the sender information to
prevent anyone from finding out where it
has been sent from. Botnets are machines
that keep on sending spam. Today, botnets
are the main choice for cyber criminals who
seek to conceal their identities by using
third-party computers as vehicles for their
fbibotnets). The FBI has identified at least
2.5 million unsuspecting computer users
who have been victims of botnet activities
botnets). Spam sometimes attempts to sell
a product, convey some messages, or they
might also try to trick the recipient to be-
come infected, or attempt to lure them into
visiting a website that can infect them.
Spam can cause a lot of problems to
internet users. More than 90% of the emails
sent on the internet are spam. Billions of
dollars of counterfeit software, electronics,
as well as shoes, watches, etc., are being
sold because of spam advertisements. In
this way, huge financial loss occurs to the
companies. Spam emails, claiming to be
from banks, might also lure users to give
their usernames and passwords. Besides
software piracy and viruses, spam is also
the primary means of phishing and iden-
tity theft. Therefore, spam email analysis
is one of the most important topics in
cyber security. The most effective way of
controlling spam emails at the moment is
filtering (Carreras & Mrquez, 2001; Clark,
Koprinska, & Poon, 2003; Drucker, Wu,
& Vapnik, 1999; Sanpakdee, Walairacht,
& Walairacht, 2006). However, filters can
only differentiate spam emails from non-
spam emails but cannot tell the origins of
spam. In order to hide their origins, escape
detection and spam filter analysis, and to
conceal the fact that there are relatively few
organizations creating the vast majority of
these unsolicited emails, criminals use a
variety of intentional obscuring techniques.
For example, one of the techniques is to
present text primarily as an image, to avoid
traditional computer-based filtering of the
text. Spam images are sent for two reasons:
1) for advertisement purposes; 2) to hide
the textual contents of an email from spam
filters. Having no words in the message
will not allow spam filters to understand
the nature of the message.
Spam images are harder to detect than
text spam. Spam images are created when
text is embedded into images and content
obscuring technologies are used to defeat
spam blocking techniques. Spammers use
certain methods to defeat traditional anti-
spam technologies such as fingerprinting
e.g., md5 (Rivest, 1992)), OCR, and URL
blocklist.

1. A text can be embedded in an image
which appears as normal text to the
recipient but the spam blocking tech-
nologies will never be able to “see” the
text as it is actually an image.
2. Spammers vary the space between
words and lines and also add random
spckles to make messages look differ-
ent to different recipients, though all of
them have the same text. By this way,
they evade fingerprinting technology
such as md5 (Rivest, 1992) by making
the images appear unique to standard
spam analysis.
3. Use of different colors and varying
font size makes it impossible for OCR
techniques to find out spam. Also,
splitting up one word into two halves
with a gap in between deceives OCR
techniques.
Computer Hacking and the Techniques of Neutralization: An Empirical Assessment
www.igi-global.com/chapter/computer-hacking-techniques-neutralization/60964?camid=4v1a