Chapter 4
AC/DC Conversion

BASIC INDICATORS IN RESPECT TO THE SUPPLY NETWORK

Figure 1 displays a power electronic converter connected to the mains. In general, a power electronic converter is an electrical power converter – controlled or uncontrolled rectifier, AC regulator, compensator of reactive power, converter of phase number, active power filter. The converter supplies a load with power Pout, and in the same time it loads the mains with active power P and total power S.

Power factor is defined as a ratio of active power P to total apparent power S:

\[K_p = \frac{P}{S} \]

(4.1)

If the voltage and current of the supply network are with non-sinusoidal waveform, they contain DC component and they can be presented in Fourier series, then the active power is given as:

\[P = U_0 \cdot I_0 + \sum_{k=1}^{n} U_k \cdot I_k \cdot \cos \phi_k \]

(4.2)

DOI: 10.4018/978-1-61520-647-6.ch004

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
where in U_k and I_k are the effective values of the kth harmonic of the voltage and current, respectively, and ϕ_k is the displacement angle.

Total power is a product of the effective values of the source voltage U and the source current I:

$$S = U \cdot I$$

where in

$$U = \sqrt{\sum_{k=0}^{n} U_k^2}$$ and $$U = \sqrt{\sum_{k=0}^{n} U_k^2}$$

(4.3)

After substituting (4.4) in (4.1), it is found:

$$K_p = \frac{U_0 \cdot I_0 + \sum_{k=1}^{n} U_k \cdot I_k \cdot \cos \phi_k}{\sqrt{\sum_{k=0}^{n} U_k^2} \cdot \sqrt{\sum_{k=0}^{n} I_k^2}}$$

(4.5)

The mains voltage is usually accepted to be of a pure sinusoidal waveform and it does not contain a DC component, and the source current is usually accepted to be of non-sinusoidal waveform. So, it is derived:

$$K_p = \frac{\nu \cdot I_1 \cdot \cos \phi_1}{U_1 \cdot \sqrt{\sum_{k=1}^{n} I_k^2}} = \frac{I_1 \cdot \cos \phi_1}{I \cdot \cos \phi_1} = \nu \cdot \cos \phi_1$$

(4.6)

From (4.6) it is seen, that the power factor is a product of two variables, the highest value of each of them can be equal to 1. The two variables are:

- ν: The distortion factor
- $\cos \phi_1$: The displacement factor, where in ϕ_1 is the angle of the displacement between the sinusoidal source voltage and the first current harmonic.

Besides the distortion factor, the current non-sinusoidal waveform is also characterized by harmonic distortion factor or a total harmonic distortion defined as:
Related Content

An Empirical Result Analysis of Dynamic Weighted Live Migration Mechanism for Load Balancing in Cloud Computing

Renewable Energy Technologies
www.igi-global.com/chapter/renewable-energy-technologies/63933?camid=4v1a

Permit Issuance Process Evaluation
www.igi-global.com/chapter/permit-issuance-process-evaluation/73977?camid=4v1a

Robustness of US Economy and Energy Supply/Demand Fluctuations
www.igi-global.com/article/robustness-of-us-economy-and-energy-supplydemand-fluctuations/186986?camid=4v1a