The mHealth Stack:
Technology Enablers for Patient-Centric Mobile Healthcare

Benjamin Falchuk, Telcordia Technologies, USA
David Famolari, Telcordia Technologies, USA
Russell Fischer, Telcordia Technologies, USA
Shoshana Loeb, Telcordia Technologies, USA
Euthimios Panagos, Telcordia Technologies, USA

ABSTRACT

Applications accessible through mobile devices, such as mobile phones, are playing an increasingly important part in the delivery of high quality and personalized healthcare services. In this article, we examine current usage of mobile devices and networks by mobile healthcare applications, and present our views on how mobile devices and networks could be used for creating patient-centered healthcare applications. The patient-centered healthcare paradigm allows for increased quality of care and quality of life for patients while increasing personal freedom to move about and be always connected to caregivers and healthcare services. The structure of our discussion is analogous to layered protocol stack in communications, progressing from the network and radio technologies, servicing middleware, cloud services, health sensors, mobile smartphones, and applications. All these layers come into play to support future mobile healthcare services.

Keywords: Connected Health, Healthcare Enablers, Mobile Applications, Patient-Centric Care

INTRODUCTION

It is widely recognized that major changes are required for the healthcare system worldwide. Health expenditures are rising; the US expenditure on healthcare was 15% of GDP 2006, 11% in France and Germany, 10% in Canada, and 8% in the United Kingdom and Japan (OECD, 2008). At the same time, quality of care, clinical outcomes, and patient satisfaction are on the decline.

In the United States, Americans are dissatisfied with their healthcare system (Schoen et al., 2007) and the productive efficiency of US healthcare has been found to be inferior to other countries—on a per capita basis, the US healthcare system delivers less in quality-adjusted health than Canada or France, for example (Garber et al., 2008). In response, major stakeholders have proposed comprehensive solutions.
to these problems. A coalition of employers, primary care societies, health plans, and patient groups known as the Patient-Centered Primary Care Collaborative (PCPCC) supports a model of care delivery called the “Patient-Centered Medical Home” (PCMH) as a solution. The PCMH is a care system in which patients have a single point of entry (their “medical home”) that provides continuous and coordinated care to help patients navigate the disparate elements of the medical system.

While there is high-level consensus about the definition of patient-centered care and a vision of what it would look like, the specific attributes of primary care practices and patient services that enable this vision are not as well-defined. Davis (Davis et al., 2005) has proposed a set of key characteristics of “patient-centered” care to stimulate discussion, including:

1. Ongoing, routine patient feedback to a medical practice;
2. Integrated information transfer across a team of providers;
3. High care availability, efficient use of doctor/patient time;
4. Information systems that support high-quality care;
5. Increasing the patient’s engagement in care.

This article focuses on the technology of mobile devices and networks, their current use for mobile healthcare applications, and how they might be used for creating applications supporting the attributes of patient-centered healthcare outlined above. The structure of our discussion is analogous to the layered protocol stack in communications; progressing from mobile devices and associated sensors at the bottom layer, to the networks, middleware, cloud services and applications at successively higher layers that enable current and future mobile healthcare services. As we will discuss, we believe that mobile technologies have a unique and powerful role to play in the delivery of patient-centered healthcare, not simply because they are a popular and convenient form of information and communication technology (ICT) delivery, but because they offer unique characteristics not possible in other forms of ICT.

MOBILE HEALTH VISION

This section outlines an overarching vision of mobile health, i.e., the delivery of healthcare applications over mobile devices. The vision serves as a use case for this article and paints a picture of what mobile patient-centered healthcare may look like in the future. Some of the technologies and capabilities described are already available today but, on the whole, the use case is forward looking and aims to drive an interesting discussion rather than reflect all possible minutiae of mobile health transmission standards and services.

Figure 1 represents a high-level mobile health use case. Some of the key aspects of this use case are:

- Health sensors
- Mobile patients
- Smartphones with multimodal access running applications (e.g., adherence, EHR, reporting)
- Multiple radio infrastructures
- Social (human) resources
- Middleware, networked services (e.g., electronic health records database, reminder services)

Let us consider this broad use case in some of its subparts. In this article, a typical health patient is one who is not confined to his home or clinic, but rather owns a mobile multimodal smartphone (i.e., one able to use two or more types of radio access networks) and gets “out and about” often. At various times during the day—particularly when at home and when he can use his home PC and network gateway— he may attach various health sensors to his body which can organize themselves in so-called “body-area networks”, take readings and transmit sensed information to either a PC or the user’s smart-
15 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage:

www.igi-global.com/article/mhealth-stack-technology-enablers-patient/40924?camid=4v1

Recommend this product to your librarian:

www.igi-global.com/e-resources/library-recommendation/?id=2

Related Content

Exploring Incidence-Prevalence Patterns in Spatial Epidemiology via Neighborhood Rough Sets
www.igi-global.com/article/exploring-incidence-prevalence-patterns-in-spatial-epidemiology-via-neighborhood-rough-sets/172026?camid=4v1a

Analysing Clinical Notes for Translation Research: Back to the Future
www.igi-global.com/chapter/analysing-clinical-notes-translation-research/49975?camid=4v1a

Telemedicine: Generating the Virtual Office Visit
www.igi-global.com/chapter/telemedicine-generating-virtual-office-visit/25823?camid=4v1a
A Historical Overview of Health Disparities and the Potential of eHealth Solutions
www.igi-global.com/chapter/historical-overview-health-disparities-potential/13000?camid=4v1a