Chapter 5

Client/Server Standardization

“Uniform Case”

INTRODUCTION

It is often said that the use of standards in IT saves money. An example is given by Nash (2001) which shows that annual end-user support at a company using a standardized IT environment costs $5400 per workstation, compared with $7400 at a company that uses a mix of technologies. As part of in depth case study research, this type of observations will be further substantiated. Multiple case studies will be carried out, enabling both literal and theoretical replications. The first one is about product standardization of both back-end and front-end of a desktop environment.

As described in Chapter 2, Ross (2003) argued that in the ‘standardized technology architecture stage’, with lead-times that range from 2 to 6 years, IT resources are put in a shared infrastructure allowing cost savings by e.g. significant reduction in the number of vendor packages that offer similar functionalities. This also increases IT maintainability, reliability and security.

CASE DESCRIPTION

At the head office of FINCORP the IT environment consisted of a plethora of different hardware and software products. Managing this environment was difficult; it involved high support costs and long

DOI: 10.4018/978-1-61520-759-6.ch005
resolution times. Because of the lack of standardization, upgrades were difficult to implement. Therefore, a two-year IT standardization project was carried out affecting 10,000 end-users of one of the company’s Business Units. The scope of the project, which included de facto standards of hardware and software at both the front and back ends of the Business Unit, ranged from desktop productivity tools to applications for complex financial transactions.

The main objectives of the standardization project were to reduce the total cost of ownership or TCO with 18% (calculated against industry benchmarks) and to facilitate change flexibility. Cost reductions were needed especially in the fields of procurement and support, and they were expected to result in a decrease of the environment’s complexity by reducing the variety at both the hardware and software levels. More specifically this entailed:

- Reduction of development costs;
- Reduction of support costs;
- Reduction of purchase and license costs;
- Easier SLA management;
- Increased efficiency of end-users.

With respect to flexibility the most important requirements were to make possible free seating, allowing staff to easily relocate from one workspace to another, and the seamless rollout of changes. Because of the standardized IT platform, migration to new technologies should become easier as well. In this section we will describe the project’s implementation as well as its results in terms of efficiency and effectiveness of the company’s IT delivery and support processes.

This case deals mainly with de facto Client/Server (C/S) standards that have both a wide reach and range. The reach of these standards is the complete Business Unit and some small sections of other departments that require applications in this environment. The range is all applications that are used within this Business Unit (from desktop productivity tools to applications for complex financial transactions).

Implementation and Usage

The IT products specified in the new set of IT standards were selected by the Business Unit involved and the company’s IT engineering department, working in close cooperation. The Business Unit not only set the project’s cost saving targets but also defined the future standard’s functional requirements, which rendered the project business-oriented rather than technology-focused. A three-tier approach was followed to arrive at the new set of standards: hardware standardization, system software standardization, and application software standardization.

Hardware Standardization

In order to decrease complexity and facilitate the possibility of free seating (with the aim to ease staff accommodation) an environment was chosen that is known as server-based computing, terminal server remote desktop or as server-based thin client. This set-up minimized the dependencies between the system’s hardware components and consisted of three main elements:

- thin clients (PCs set up with a minimum of local applications);