Inductive Classification of Semantically Annotated Resources through Reduced Coulomb Energy Networks

Nicola Fanizzi, Università degli studi di Bari, Italy
Claudia d’Amato, Università degli studi di Bari, Italy
Floriana Esposito, Università degli studi di Bari, Italy

ABSTRACT

The tasks of resource classification and retrieval from knowledge bases in the Semantic Web are the basis for a lot of important applications. In order to overcome the limitations of purely deductive approaches to deal with these tasks, inductive (instance-based) methods have been introduced as efficient and noise-tolerant alternatives. In this paper we propose an original method based on a non-parametric learning scheme: the Reduced Coulomb Energy (RCE) Network. The method requires a limited training effort but it turns out to be very effective during the classification phase. Casting retrieval as the problem of assessing the class-membership of individuals w.r.t. the query concepts, we propose an extension of a classification algorithm using RCE networks based on an entropic similarity measure for OWL. Experimentally we show that the performance of the resulting inductive classifier is comparable with the one of a standard reasoner and often more efficient than with other inductive approaches. Moreover, we show that new knowledge (not logically derivable) is induced and the likelihood of the answers may be provided.

Keywords: Knowledge Bases, Reduced Coulomb Energy Network, Resource Classification, Resource Retrieval, Semantic Web

1 INTRODUCTION

The tasks of resource classification and retrieval from knowledge bases (KBs) in the Semantic Web (SW) are the basis for many important knowledge-intensive applications. However the inherent incompleteness and accidental inconsistency of knowledge bases in the Semantic Web requires new different methods which are able to perform such tasks efficiently and effectively (although with some acceptable approximation). Instance-related tasks are generally tackled by means of logical approaches that try to cope with the problems mentioned above. This has given rise to alterna-
tive methods for approximate reasoning (Wa-
che, Groot & Stuckenschmidt, 2005), (Hitzler
& Vrandecic, 2005), (Haase, van Harmelen,
Huang, Stuckenschmidt & Halberstadt, 2005),
(Möller, Haarslev & Wessel, 2006), (Huang &
v van Harmelen, 2008), (Tsrendorj, Rudolph,
approximate reasoning are known to be often
quite efficient, scalable, and noise-tolerant.

Recently, first steps have been taken to
apply classic machine learning techniques for
building inductive classifiers for the complex
representations, and related semantics, adopted
in the context of the SW (Fanizzi, d’Amato
& Esposito, 2008a), especially through non-
parametric\(^1\) statistical methods (d’Amato,
Fanizzi & Esposito, 2008), (Fanizzi, d’Amato &
Esposito, 2008d). Instance-based inductive
methods may help a knowledge engineer
populate ontologies (Baader, Ganter, Sertkaya
& Sattle, 2007). Some methods are also able
to complete ontologies with probabilistic asser-
tions derived exploiting the missing and sparse
data in the ontologies (Rettinger, Nickles &
Tresp, 2009). Further sophisticate approaches
are able of dealing with uncertainty encoded in
probabilistic ontologies through suitable forms
of reasoning (Lukasiewicz, 2008).

In this paper we propose a novel method
for inducing classifiers from ontological data
that may naturally be employed as an alter-
native way for performing concept retrieval
(Baader, Calvanese, McGuinness, Nardi, Patel-
Schneider, 2003) and several other related ap-
lications. Even more so, like its predecessors
mentioned above, the induced classifier is also
able to determine a likelihood measure of the
induced class-membership assertions which is
important for approximate query answering and
ranking. Some assertions could not be logically
derived, but may be highly probable according
to the inductive classifier; this may help to cope
with the uncertainty caused by the inherent
incompleteness of the KBs even in absence of
an explicit probabilistic model.

Specifically, we propose to answer que-
ries adopting an instance-based classifier, the
Reduced Coulomb Energy (RCE) network
(Duda, Hart & Stork, 2001), induced by a non-
parametric learning method. The essentials of
this learning scheme have been extended to be
applied to the standard representations of the SW
via semantic similarity measures for individual
resources. As with other similarity-based meth-
ods, a retrieval procedure may seek for individu-
als belonging to query concepts, exploiting the
analogy with other training instances, namely
the classification of the nearest ones (w.r.t. the
measure of choice). Differently from other lazy-
learning approaches experimented in the past
(d’Amato, Fanizzi & Esposito, 2008) which
do not require training, yet more similarly to
the non-parametric methods based on kernel
machines (Bloehdorn & Sure, 2007), (Fanizzi,
d’Amato & Esposito, 2008d), the new method
is organized in two phases:

- In the training phase, an RCE network
 based on prototypical individuals (pa-
 rameterized for each prototype) is trained
to detect the membership of further indi-
 viduals w.r.t. some query concept;
- The network is then exploited by the clas-
sifier, during the classification phase, to
 make a decision on the class-membership
 of an individual w.r.t. the query concept
 on the grounds of a likelihood estimate.

The network parameters correspond to the
radii of hyperspheres centered at the prototypical
individuals in the context of the metric space
determined by some measure. The classifica-
tion of an individual is induced observing the
balls it belongs to and on its distance from their
centers (training prototypes). The efficiency of
the method derives from limiting the expensive
model construction to a small set of training
individuals, while the resulting RCE network
can be exploited in the next phase to efficiently
classify a large number of individuals. More-
ever the method may easily have a parallel
implementation.

Similarity measures derived from a family
of semantic pseudo-metrics (d’Amato,
Technology Engineering for NPD Acceleration: Evidences from the Product Design

Mobile Ontologies: Concept, Development, Usage, and Business Potential