Cloud Computing Based E-Learning System

Mohammed Al-Zoube, Princess Sumaya University for Technology, Jordan
Samir Abou El-Seoud, Princess Sumaya University for Technology, Jordan
Mudasser F. Wyne, National University, USA

ABSTRACT

Cloud computing technologies although in their early stages, have managed to change the way applications are going to be developed and accessed. These technologies are aimed at running applications as services over the internet on a flexible infrastructure. Microsoft office applications, such as word processing, excel spreadsheet, access database and many more can be accessed through the internet, even though the files and applications are housed in the cloud. Cloud computing provides a low cost solution to academic institutions for their researchers, faculty and students. This setup provides an additional benefit because all these browser-based applications can also be accessed through mobile devices in addition to being available to a variety of laptop and desktop computers, provided internet access is available. In this paper we present a solution that is based on cloud computing and can be used for building a virtual environment both for teaching and learning. We present an interactive tool that can be used for science education; we combined various technologies to achieve this goal. The environment and the design proposed can also be used as a platform for exploring and sharing new ideas as well as for designing, modifying and monitoring educational or course contents. In our design under the same environment we also allow integration of different pedagogical approaches to both learning and teaching.

Keywords: Cloud Computing, Gadgets, Mashups, PLE, VLE, Web 2.0

1. INTRODUCTION

The increased use of technology for improved teaching and enhanced learning is going to be the future of education at all levels. Most of the colleges and universities, because of low enrollment in their onsite classes, now offer courses and in some cases the entire degree program through distance education or in online format as well as use various other teaching and learning models. Most of these online offerings currently are at undergraduate level but there is a growing trend of using similar models for graduate and post baccalaureate professional education. There are many different terminologies and technologies used in the online teaching and learning arena, as well as for dissemination of knowledge. This new frontier of education is generally known as E-Learning (Sone, 2001),

DOI: 10.4018/jdet.2010040105
Carchiolo in (Carchiolo, Longheu, Malgeri, & Mangioni, 2003) propose an e-learning model related to this new frontier of education, in an attempt to significantly improve the whole learning process for learners. The model provides to both students as well as teachers an open and modular learning environment. In this approach, courses are personalized according to the needs and capabilities of each individual student. Teacher guidelines are also taken into account in this process. To accomplish personalization, courses or lessons and precedence or succession relationships are shown as graph nodes and arcs respectively. The lessons, for individual students, are extracted through the creation of personalized sub graphs (Learning paths) using a course generation engine. The lessons that are known to student are eliminated and rest is arranged into a tree with all possible paths right from the knowledge that the students possess to knowledge that is desired by the student.

To make sure that the power of the Web is fully utilized for Web-based teaching and learning, a new Game-based Situated Learning Paradigm—VISOLE (Virtual Interactive Student-Oriented Learning Environment) is proposed in (Shang, Jong, Lee, & Lee, 2007), with an aim to help students learn from close to real-life experiences and social constructions of knowledge. The study presented showed that the VISOLE learning paradigm, did actually help students to learn subject-specific knowledge and generic skills, and most importantly did motivate students to learn. In fact, there were some other findings to support that the students could also actually learn the knowledge they were required to get in the process.

With rapid advances in technology and extensive use of computers in academic institutes, businesses and homes, there is now an excellent opportunity to create and support a new culture of learning. In (Sing, Sivaswamy, & Naidu, 2007) an approach is presented to create a Multi-Component Distributed System (MuDiS) that can be used in science education primarily at the school level, though it is also usable in tertiary education. Multi User Virtual Environments (MUVEs) introduces innovative and new opportunities for academicians to improvise and design new ways of addressing the specific needs of ‘online student’ learning styles. Today’s online students have very different thinking styles and ways of processing information from their predecessors. (Prensky, 2001) provides a rich, multimedia environment where interaction and collaboration between students can take place (Chandler, King, Duke-Williams, & Crellin, 2007). New and innovative opportunities for teaching and learning are offered by MUVEs (Hetherington, Bonar-Law, Fleet, & Parkinson, 2008). MUVEs are primarily a synchronous 3D social platform, built on gaming technologies but operating without goals and objectives. However all contents are created and owned by the user. These environments are increasingly being used as a new and more advanced platform for 3/4D data visualization and e-learning by educators all around the globe.

Jacobson et al. in (Jacobson, Miao, Kim, Shen, & Chavez, 2008) has outlined the rationale and described major development and research components of an ongoing international research project. This project explores the ways in which agent augmented multi-user virtual environments might be designed to have a significant impact on learning outcomes. The paper describes ongoing learning and intelligent agent research that involves a new class of educational Interactive and Digital Media (IDM). It integrates intelligent computational agents with the functionality and affordances of 3D Multi-User Virtual Environment (MUVE). This research builds upon a proof-of-concept Virtual Singapura immersive learning environment project. The focus of the research is to improve the functionality of intelligent agents in Virtual Singapura in order to enhance student learning outcomes from their experiences in the virtual world. The intelligent agents in Virtual Singapura are modeled by Goal Net, which is a tool for modeling goals of an agent in a multi-agent system (Shen, Miao, & Gay, 2004). Projects such as this have not only strong
Security and Privacy in Distance Education
www.igi-global.com/chapter/security-privacy-distance-education/12321?camid=4v1a

Social Connection Theory for Online Problem-Solving Groups
www.igi-global.com/chapter/social-connection-theory-online-problem/12006?camid=4v1a