“The human imagination is an amazing thing. As children, we spend much of our time in imaginary worlds, substituting toys and make-believe for the real surroundings that we are just beginning to explore and understand. As we play, we learn. And as we grow, our play gets more complicated. We add rules and goals. The result is something we call games.

Games cultivate – and exploit – possibility space better than any other medium. In linear storytelling, we can only imagine the possibility space that surrounds the narrative: What if Luke had joined the Dark Side? What if Neo isn’t the One? In interactive media, we can explore it.” (Wright, 2006)

“We live in a complex world, filled with myriad objects, tools, toys, and people. Our lives are spent in diverse interaction with this environment. Yet, for the most part, our computing takes place sitting in front of, and staring at, a single glowing screen attached to an array of buttons and a mouse. Our different tasks are assigned to homogeneous overlapping windows. From the isolation of our workstations we try to interact with our surrounding environment, but the two worlds have little in common. How can we escape from the computer screen and bring these two worlds together?” (Wellner, Mackay & Gold, 1993)

INTRODUCTION

Ubiquitous computing foresees computers that are embedded throughout the physical environment, that can communicate with each other, and that can monitor their surroundings and respond in dynamic, “intelligent” ways. (Boone, 2008) The power of computing will be utilized beyond the traditional box and be applied to almost every aspect of our lives. While this may seem a distant proposition, a different type of technology-produced world is already here: the virtual world.

In many ways, ubiquitous computing is viewed as the opposite of virtual reality. The earliest writings on ubiquitous computing recognized this fundamental difference. “Perhaps most diametrically opposed to our vision [of ubiquitous computing]
is the notion of ‘virtual reality,’ which attempts to make a world inside the computer Virtual reality focuses an enormous apparatus on simulating the world rather than on invisibly enhancing the one that already exists. Indeed, the opposition between the notion of virtual reality and ubiquitous, invisible computing is so strong that some of us use the term ‘embodied virtuality’ to refer to the process of drawing computers out of their electronic shells.” (Weiser, 1991) Yet, the two share an important common trait: both are mediated by computing ability.

The previous chapter introduced “MMORPGs” which are also sometimes referred to as game worlds or virtual worlds. Some of the most popular American MMORPGs are World of Warcraft, Everquest, Ultima Online, Dark Age of Camelot, Star Wars Galaxies, and City of Heroes. Legend of Mir, Final Fantasy XI, Lineage II, MU Online, Ragnarok Online, Lineage, and Kingdom of the Winds are some popular Asian MMORPGs. Dubit, Runescape, Playdo, and Habbo Hotel are popular in Europe. (Terra Nova, 2008)

Another type of popular virtual world is the social virtual world, also sometimes referred to as “unstructured.” Some popular social virtual worlds are Second Life, Sims Online, Project Entropia, and There. (Virtual Worlds Review, 2008) Categorization as “social” does not fully comprehend these virtual worlds. Each world relies to an extent on user-created content. For example, Second Life started as a largely blank slate with most in-world objects being designed and created in-world by individual players. (Second Life, Create Anything, 2008) Social worlds can also have some game-like incentive aspects. The entire concept embodies far more than traditional video games.

A. WHAT IS A GAME?

Frasca (2001) defines a videogame as “any forms of computer-based entertainment software, either textual or image-based, using any electronic platform such as personal computers or consoles and involving one or multiple players in a physical or networked environment.” They tend to have the elements shown in Table 1.

Following Caillois (2001) videogames offer combinations of chance, competition, role-play and kinaesthetic pleases. They can offer both paidea and ludus rules thereby allowing players to engage in goal-oriented or ‘free play’ activity. In this manner, videogames are not to be viewed as restrictive rule systems. Recognition must be given to the necessity of exploration and deduction as well as the player’s ability to ignore or even subvert a designer’s intention. A player can develop tactics and strategy, perhaps exploiting weaknesses or flaws in the game, or they may even define their own games within the world made available, thus imposing their own ludus rules. Furthermore, the definition of a video games employed here recognises that certain games – or certain sequences or modes within games – are designed as non-goal-oriented ‘playgrounds’. (Newman, 2004)

In a best games review for gaming platforms, Berens and Howard (2001) demonstrate the relevance of industry-derived genres, as ‘they are useful pointers and reflect the industry’s current view of how they operate.’ Integrating some similar categories, they present seven game types: (1) action and adventure, (2) driving and racing, (3) first-person shooter, (4) platform and puzzle, (5) role-playing, (6) strategy and simulation, and (7) sports and beat-‘em ups. (Id.)

On the other hand, what is not a videogame? Rollings and Morris (2000) state “a game is not: a bunch of cool features, a lot of fancy graphics, a series of challenging puzzles, nor an intriguing setting and story.” They do not preclude these characteristics; rather these qualities do not, in themselves, make a videogame nor help to describe the uniqueness of the form.

So, what do players want in a videogame? Rouse (2001) identifies a range of player moti-
Related Content

Visual Complexity Online and Its Impact on Children's Aesthetic Preferences and Learning Motivation

Community and Technology: Social Learning in CCIS
Roger S. Slack (2000). *Community Informatics: Enabling Communities with Information and Communications Technologies* (pp. 494-514). www.igi-global.com/chapter/community-technology-social-learning-ccis/6724?camid=4v1a

Preparing for the Forthcoming Industrial Revolution: Beyond Virtual Worlds Technologies for Competence Development and Learning

New Media, Communities, and Social Practice: An Introductory Tutorial