Chapter XII

CMU-WEB: A Conceptual Model With Metrics For Testing and Designing Usability in Web Applications

Akhilesh Bajaj and Ramayya Krishnan
Carnegie Mellon University, USA

With the ubiquitous availability of browsers and Internet access, the last few years have seen a tremendous growth in the number of applications being developed on the World Wide Web (WWW). Models for analyzing and designing these applications are only just beginning to emerge. In this work, we propose a three-dimensional classification space for WWW applications, consisting of a degree of structure of pages dimension, a degree of support for interrelated events dimension, and a location of processing dimension. Next, we propose usability design metrics for WWW applications along the structure of pages dimension. To measure these, we propose CMU-WEB—a conceptual model that can be used to design WWW applications, such that its schema provide values for the design metrics. This work represents the first effort, to the best of our knowledge, to provide a conceptual model that measures quantifiable metrics that can be used for the design of more usable Web applications, without empirical testing.

INTRODUCTION

Over the last five years, there has been a tremendous growth of applications being developed to run over the World Wide Web (WWW) (Berners-Lee, Caillau, Luotonen, Nielsen, & Secret, 1994). Several technologies are in vogue for writing these applications...
(Bhargava & Krishnan, 1998). Depending on the kind of technology used, different classes of applications can be created using the WWW as the medium of transport.

Given the large number of systems analysis and design methods available, there is some confusion as to which methods are suitable for WWW applications. This work makes two contributions. First, we present a three dimensional classification space for WWW applications. The dimensions used are the location of processing, the degree of support for interrelated events, and the structure of pages. The classification scheme we use provides insight into which existing modeling methodologies are useful for designing a WWW application along each dimension. We find that adequate models exist for the location of processing and the interrelated events dimension. However, while several modeling methods (e.g., Bichler & Nusser, 1996; Isakowitz, Stohr, & Balasubramanian, 1995) have been recently proposed for the documentation and maintenance of WWW applications, there is a need for a conceptual model that can facilitate the design of WWW applications along the degree of structure of pages dimension, such that the applications are more usable. We propose design criteria that relate to usability and hold along the structure of pages dimension in the form of high-level requirements. These requirements represent questions that should be answered by a conceptual model that seeks to facilitate the design of WWW applications so that they are more usable.

The second contribution of this work is a model that solves the above need to be able to quantitatively evaluate the high-level requirements. We propose Conceptual Model for Usable Web Applications (CMU-WEB), a conceptual model of WWW applications that facilitates the design of more usable WWW applications by providing a schema that provides values for metrics that measure the high-level requirements along the structure of pages dimension.

The rest of this chapter is organized as follows. In the following section, we present a 3-dimensional classification space for WWW applications. Next, we propose a list of high-level usability metrics, along one dimension of the space. Then, we define CMU-WEB and show how usability metric values can be derived from CMU-WEB schema. After that, we discuss how CMU–WEB can be used to design new Web applications, and how it fits in with commonly used heuristic techniques for Web application design. Finally, we give directions for future research and the conclusion in the final section.

A CLASSIFICATION SPACE FOR WWW APPLICATIONS

In this work, we define a WWW application as one that runs using the hypertext transfer protocol (HTTP) as the transfer protocol. In our view, this is what differentiates WWW applications from other networked applications. We define an application as consisting of a series of zero or more events. We define an event as a subset of an application that consists of at least one user input, followed by some processing.

Networked applications in general differ along several dimensions, such as the degree of state maintained on the server, the class of user, the type of user interface, and the programming language used. Before identifying dimensions for classifying WWW applications (which are a subset of all networked applications), we identify certain features that are shared by all WWW applications:

• All WWW applications are inherently client/server. The WWW client is a Web browser, that communicates with a WWW server using HTTP.1
Clustering Vertices in Weighted Graphs
Derry Tanti Wijaya and Stephane Bressan (2012). Graph Data Management: Techniques and Applications (pp. 285-298).
www.igi-global.com/chapter/clustering-vertices-weighted-graphs/58615?camid=4v1a