Chapter 1.11
Supply Chain Information Systems and Decision Support

Liam Doyle
Waterford Institute of Technology, Ireland

INTRODUCTION

Supply chains have become increasingly important as organisations have moved from competing on a stand-alone basis to recognizing that their success depends upon their trading partners. This includes their upstream suppliers and downstream customers. A supply chain involves a number of tiers of suppliers and customers that extends from the initial source of raw materials through to the final consumer of the finished product.

Supply chain management involves the coordination of a number of functional areas in multiple organisations. Large amounts of information can be captured describing the activities in these organisations. It is possible to use this information in order to assist in decision making at strategic, tactical, and operational levels of the supply chain. The large volume of information available and the interdependencies between the activities within these multiple organisations means that it is necessary to employ computerized decision support systems to optimize supply chain activities.

BACKGROUND

Christopher (2005, p. 4) defines logistics as:

While logistics focuses on the movement of materials, Christopher (2005) describes supply chain management as being broader and defines supply chain management as “the management of upstream and downstream relationships with suppliers and customers to deliver superior customer value at less cost to the supply chain as a whole” (p. 5).
Supply Chain Information Systems and Decision Support

Porter’s value chain model describes an organisation as a set of primary and support activities. The excess of the value added by the primary activities over the costs incurred by all the activities of the organisation provide the organisation’s margin (Porter, 1985). The excess of value delivered to the customer over costs incurred throughout the supply chain represents the margin available to be shared among the supply chain participants. There has been a move away from traditional, transaction-oriented logistics practices which served to maximise the profitability of the individual firm. The relationship between supply chain participants has changed from being adversarial in nature to being cooperative. Organisations seek to increase the profitability of the supply chain as a whole and to share the available margin. Relationships between organisations have changed from a zero-sum game to a win-win situation.

Since the early 1990s, the process view of organisations has been mooted as a preferred alternative to the traditional functional structure. A process is a set of related activities which take place in a number of different functional units. A process-oriented organisation seeks to optimise the overall process in order to meet the needs of the end-customer of that process. This contrasts with the functional view which seeks to optimise individual functional units and which leads to suboptimal overall performance and which tends to ignore the needs of the customer.

The supply chain concept extends the process view to include multiple organisations. Processes which extend across organisational boundaries seek to satisfy the needs of the end-customer in an optimal manner. The profitability of each organisation in the supply chain depends on the success of the supply chain as a whole in serving the needs of the customer. Ultimately it is from the end-customer that funds are made available throughout the entire supply chain.

The execution of these interorganisational processes generates large amounts of data which can be shared among supply chain members. This information can be used to aid decision making to support the complex task of managing the supply chain. The major areas which require decision support are production planning, transportation, and inventory control.

SUPPLY CHAIN INFORMATION SYSTEMS AND DECISION SUPPORT

The process view of organisations as espoused by Hammer (1990) and Davenport and Short (1990) identified the interdependent nature of activities within organisations and promoted the alignment of these activities to focus on the customer. The move away from functional silos, which treated each functional unit as independent, required a sharing of information between these functional areas. The move to process-oriented organisations was hampered by the limited power of available information technologies at that time. Many organisations had computer applications which existed as islands of automation within these functional silos. These applications were not designed to share information and in many cases the applications and their data were incompatible. There emerged a business requirement for applications which were more process-oriented and which could serve to integrate multiple functional areas within the organisation. This period also saw the development of more powerful information and communication technologies. Local area networks, client-server computing, database servers, application servers, and Internet technologies were adopted by many organisations and facilitated the deployment of interfunctional information systems. Linked applications helped move away from islands of automation to provide a seamless flow of information.

Supply chains can be seen as a set of linked value chains. For example, the outbound logistics activity of one value chain links with the inbound logistics activity of its downstream partners. Cooperation can also exist in activities such as
Related Content

Mastering Fashion Supply Chain Management and New Product Development in the Digital Age

Examining the Roles of Virtual Team and Information Technology in Global Business
www.igi-global.com/chapter/examining-the-roles-of-virtual-team-and-information-technology-in-global-business/143504?camid=4v1a

Business Process Reengineering and ERP: Weapons for the Global Organization
www.igi-global.com/chapter/business-process-reengineering-erp/44065?camid=4v1a

Building a Knowledge Management System in a Design Firm: The Case of XYZ Structural Department
www.igi-global.com/chapter/building-knowledge-management-system-design/69111?camid=4v1a