Chapter 1

Designing of E-Learning for Engineering Education in Developing Countries: Key Issues and Success Factors

B. Noroozi
University of Guilan, Iran & University of Cincinnati, USA

M. Valizadeh
University of Guilan, Iran

G. A. Sorial
University of Cincinnati, USA

ABSTRACT

Traditional education for engineers has shifted towards new methods of teaching and learning through the proliferation of Information and Communication Technologies (ICT). The continuous advances in technology enable the realization of a more distributed structure of knowledge transfer. This becomes critically important for developing countries that lack the resources and infrastructure for implementing engineering education practices. The two main themes of technology in designing e-Learning for engineering education in developing countries focus either on aspects of technological support for traditional methods and localized processes, or on the investigation of how such technologies may assist distance learning. Commonly such efforts are threefold, relating to content delivery, assessment and provision of feedback. This chapter is based on the authors ‘10 years’ experience in e-Learning, and reviews the most important key issues and success factors regarding the design of e-Learning for engineering education in developing countries.

DOI: 10.4018/978-1-61520-659-9.ch001
1. INTRODUCTION AND BACKGROUND

Recent years have seen dramatic changes in engineering education in terms of increased access to lifelong learning, increased choice in areas of study and the personalization of learning. To advance across all domains seems to necessitate incompatible changes to the learning process, as practitioners offer individualized learning to a larger, more diverse engineering student base. To achieve this cost effectively and without overwhelming practitioners requires new approaches to teaching and learning coupled with access to a wide range of resources: practitioners need to be able to source and share engineering materials, adapt and contextualize them to suit individual needs, and use them across a variety of engineering educational models (Littlejohn et al, 2008).

Hence a great deal of effort has focused on the integration of new technologies such as multimedia video, audio, animation, and computers, with associated software, to achieve the improvement of traditional engineering education. The internet technologies have also been popularly applied to web-based learning (Hung et al, 2007). The growth of the information society provides a way for fast data access and information exchange all over the world. Computer technologies have been significantly changing the content and practice of engineering education (Gladun et al, 2008). Information and communication technologies (ICT) are rightly recognized as tools that are radically transforming the process of learning. Universities, institutions and industries are investing increasing resources to advance researches for providing better and more effective learning solutions (Campanella et al, 2007).

Figure 1. The most important and meaningful characteristics for engineering instruction

- **Constructive learning**: Learning is a process that starts with information/knowledge already available to the learner
- **Active approach**: The engineering student actively participates to the learning process
- **Intentional**: The goals to reach are understood and accepted from the engineering student
- **Collaborative**: The new knowledge is built within relational contests
- **Conversational**: The learning process is carried on in a dialogic form
- **Contextual**: The learning task corresponds to significant tasks of the real world
- **Thoughtful**: The engineering students organize what they learn reflecting on performed
Related Content

Work-Integrated Learning in Postgraduate Design Research: Regional Collaboration between the Chinese Mainland and Hong Kong
www.igi-global.com/chapter/work-integrated-learning-postgraduate-design/53294?camid=4v1a

Will Different Scales Impact on Design Collaboration in 3D Virtual Environments?
Jerry Jen-Hung Tsai, Jeff WT Kan, Xiangyu Wang and Yingsiu Huang (2012). Computational Design Methods and Technologies: Applications in CAD, CAM and CAE Education (pp. 185-198).
www.igi-global.com/chapter/will-different-scales-impact-design/62948?camid=4v1a

Design for Quality of ICT-Aided Engineering Course Units
www.igi-global.com/article/design-for-quality-of-ict-aided-engineering-course-units/104667?camid=4v1a

Development of “Real World” Project Skills for Engineering Students
www.igi-global.com/article/development-real-world-project-skills/63636?camid=4v1a