Chapter 12
Advancing the Success of Collaboration Centered KM Strategy

Johanna Bragge
Aalto University School of Economics, Finland

Hannu Kivijärvi
Aalto University School of Economics, Finland

ABSTRACT
Knowledge is today more than ever the most critical resource of organizations. At the same time it is, however, also the least-accessible resource that is difficult to share, imitate, buy, sell, store, or evaluate. Organizations should thus have an explicit strategy for the management of their knowledge resources. In this chapter we pay special attention to a KM strategy called collaboration centered strategy. This strategy builds on the assumption that a significant part of personal knowledge can be captured and transferred, and new knowledge created through deep collaboration between the organization’s members. A critical element in the collaboration centered KM strategy is the facilitation process that involves managing relationships between people, tasks and technology. We describe how the Collaboration Engineering approach with packaged facilitation techniques called ThinkLets is able to contribute to this endeavour.

INTRODUCTION
Knowledge is today more than ever the most critical resource of organizations. At the same time it is, however, also the least-accessible resource that is difficult to share, imitate, buy, sell, store, or evaluate. As for any other critical resource, organizations should have an explicit strategy for the management of knowledge resources, too. Organizations should plan how to harness knowledge resources successfully in relation to organizational goals, objectives and strategies.

What makes it challenging is that knowledge in organizations is typically dispersed in the minds of its members, working routines and processes, organizational rules, etc. Part of the knowledge is highly personal, difficult or even impossible to transform to wider usage. Especially the content of so-called tacit knowledge that is hidden even from its owner is difficult to harness, and it requires special arrangements to ‘convert’ or transfer it to wider organizational usage. Smith et
al. (2007) claim that knowledge managers have started to recognize that they need to become more sophisticated in their system-driven approach to facilitating knowledge transfer, as it just doesn’t suffice to build a database with codified knowledge and wait it to be used (see discussion also in Cross and Baird, 2000). Recently, Mäki (2008) has found that knowledge-intensive organizations encounter problems with the management of encoded knowledge and information. He recommends common organizational practices to support the use and application of both encoded and tacit knowledge in organizations.

Smith et al. (2007) divide the four main types of tacit knowledge that organizations wish to transfer into best practices, expertise, experience and innovation. Regarding best practice transfer Smith et al. (2007) claim that it is probably the one which most lends itself to technical facilitation and has the clearest value proposition associated with it. Moreover, expertise takes a long time to develop, and thus, it would be beneficial for companies to find ways to develop it more rapidly (Smith et al., 2007).

Besides knowledge transfer initiatives also measures to ensure collaboration must be taken in order for organizations to create knowledge, to innovate (Kolfschoten, 2007) and to overcome the frequent resistance to share knowledge (Thomas, 2006). Collaboration, defined as “joint effort toward a goal” (Kolfschoten, 2007) or as the “extent to which individuals actively communicate, cooperate, and help one another in their work by sharing knowledge and expertise with one another” (Thomas, 2006), is found to be one of the critical factors for knowledge management systems success besides top management leadership and compensation schemes (Thomas, 2006). Similarly, Hansen and Nohria (2004) and Tapscott (2006) have emphasized the necessity of fostering collaboration for competitive advantage. Regarding collaborative knowledge work practices, Mäki (2008) has found that modern IT applications have not been able to replace the quality, or the need, of face-to-face interaction.

Face-to-face collaboration, however, gets fairly time-consuming and challenging in process-wise as the group size grows over 3 or 4 people. Already early studies on organizational effectiveness have found that group tasks typically result in process losses (Lorge and Solomon, 1955; Steiner, 1972). These losses may occur due to production blocking (e.g. when waiting for one’s own turn to speak), evaluation apprehension, poor coordination or motivational problems. In order to mitigate the process losses - and simultaneously to stimulate the process gains like synergy and learning - researchers in management information systems have proposed the deployment of special type of groupware - Group Support Systems (GSS) - in group tasks (Huber, 1984; DeSanctis and Gallupe, 1987; Nunamaker et al. 1991). The goal of GSS is to help organizational teams make faster, more satisfying, and ultimately better decisions than those made in face-to-face, manually supported meetings (Fjermestad, 1998). The GSS installations typically consist of 10-30 networked computers in the same meeting room, having special software that enable parallel and anonymous input, real-time voting, group memory and automated reporting of the meeting minutes. The meetings are normally administered by a facilitator, following a predefined agenda that is built together with the problem owner. Process facilitation has been found to be among the most critical success factors for effective and efficient collaboration (Anson et al, 1995; Niederman et al, 1996; Ackermann et al, 2005; Dennis and Wixom, 2001; Bragge et al. 2007).

An extensive amount of research from both experimental and field studies have found that the efficiency and effectiveness of facilitated group work may indeed be increased by GSS - savings up to 50% in individual work hours have been reported when compared to regular meetings (Fjermestad and Hiltz, 1999, 2000). Despite the significant efficiency gains accrued, the GSS have