Chapter 11
Teaching in the Virtual Theatre Classroom

Stephen A. Schrum
University of Pittsburgh at Greensburg, USA

ABSTRACT
Theatre as a discipline has long been thought of as traditional, organic, and non-technological. In performance, at least one actor performs in a space inhabited by at least one spectator, and their interaction defines the theatrical event. In the teaching of theatre, students apprentice themselves to and are taught directly by masters in the field. However, in the 21st Century, the application of digital technology to the realms of theatrical performance and teaching has augmented the production of, and the methodology behind, the teaching of the theatrical art. Multi-User Virtual Environments (MUVEs), such as Second Life®, afford educators a rich interactive setting that both mirrors and enhances education and training in theatre, in the areas of ancient site reconstruction and student exploration of a virtual world. My teaching of a course titled Theatre Technology resulted in the development of some concepts regarding how a MUVE might be useful in theatre education.

INTRODUCTION
Theatre technology has evolved drastically (one might even say dramatically) since the first formal productions by the ancient Greeks in the 5th Century B.C.E. For example, the Greeks selected daytime for the presentation of their plays, since they relied on sunlight for visibility before a collective live audience. Now, in a multi-user virtual environment (MUVE), such as Second Life®, we may perform at any time of day and, with the use of a preferences slider, select the brightness of the sun or moon, a view to be shared by an audience that is at once present in the environment and dispersed across the globe.

The same MUVE technology can also be applied effectively to teaching. As Berge (2008) states: “The characteristics of virtual worlds, as a medium, promote learning that is informal and collaborative, with content and context that is...
user-created. Along with being highly social, the media-rich environment often promotes quite intense engagement” (p. 408). A MUVE can provide a learning environment to support “active, sensing, global learners” (Junglas et al., 2007, p. 93). Students may interact with their virtual environment, experiencing “discovery, investigation, and creation” (Coffman & Klinger, 2007, p. 29), while working on collaborative projects within the world. Ohio University’s VITAL Lab website, Second Life Development (2009), lists a variety of possible class projects and games that others can utilize. By finding themselves immersed in defined projects, students have a prescribed goal toward which to work, and working actively toward that goal has as its consequence the learning and enhanced retention of the intended subject matter.

While we assume that the instructor for a course is a content specialist, the virtual world also allows for an availability of other experts in a given area. Of course, a campus could employ a virtual environment for distance learning, bringing students from various locations together within the virtual world. Students may also visit or be visited by guest speakers, who may be local to their campus, or hail from across the planet. The interconnectivity, through a MUVE, holds the promise of education occurring in a Marshall McLuhan-esque global village, where instantaneous communication happens via digital technology.

Because of my experiences with producing theatre in Second Life (SL), this particular MUVE seemed an ideal setting for a new course entitled “Theatre Technology.” Following are my experiences with this course (taught in Spring 2008), with an explanation of the course rationale, the in-class assignments that dealt with SL, and a discussion of how the use of SL in this particular course might be applied to teaching other courses in a multi-user virtual environment.

TEACHING IN MUVES

The incorporation of digital technology into teaching has lead to a paradigm shift in the way some academics interact with students. Beginning with the assumption that students absorb and retain material better through active learning techniques, such as “physical activity or discussion” (Junglas, 2007, p. 90), we find that digital technology in general, and multi-user virtual environments in particular, can be utilized to promote active learning. Within virtual worlds, students are not passive observers or receivers of information, but rather interact with content, or may even create it themselves. Hence, virtual worlds, when used as a platform for teaching, place the student into an active learning environment.

Within the virtual world, the instructor may utilize a variety of active projects; as students move through the world, they interact with their environment, with objects, and with others. The others may be classmates or complete strangers they happen to encounter along the way. Such encounters, which allow for improvisational communication, can be as fruitful as the structured experiences an instructor has planned and created for the students.

While a virtual world classroom experience exhibits some obvious differences from the real world (RL, or real life) classroom, both instructors and students may discover that similarities occur as well, as teaching and learning techniques are translated from the real to the virtual world. For example, peer teaching, a vital tool that urges students to help each other, can happen quite effectively when the students buy into the virtual world in regard to telepresence—the perception that they are indeed in the other world—and co-presence—the perception that others are with them in that world (Peterson, 2006, pp. 98-99). The virtual world can thus replicate “the social, fun aspects of getting to know fellow students, commiserating with them about difficult assign-
Related Content

Virtual Speed Mentoring in the Workplace - Current Approaches to Personal Informal Learning in the Workplace: A Case Study
[www.igi-global.com/article/virtual-speed-mentoring-workplace-current/43578?camid=4v1a](www.igi-global.com/article/virtual-speed-mentoring-workplace-current/43578?camid=4v1a)

Supporting Distributed Problem-Based Learning: The Use of Feedback Mechanisms in Outline Learning
[www.igi-global.com/chapter/supporting-distributed-problem-based-learning/27718?camid=4v1a](www.igi-global.com/chapter/supporting-distributed-problem-based-learning/27718?camid=4v1a)

Motivation, Engagement and Learning through Digital Games
[www.igi-global.com/article/motivation-engagement-learning-through-digital/53858?camid=4v1a](www.igi-global.com/article/motivation-engagement-learning-through-digital/53858?camid=4v1a)

Assessing the Application of 3D Collaborative Interfaces within an Immersive Virtual University
[www.igi-global.com/chapter/assessing-application-collaborative-interfaces-within/46769?camid=4v1a](www.igi-global.com/chapter/assessing-application-collaborative-interfaces-within/46769?camid=4v1a)