Chapter 2

What Does Knowledge Have to do with Ethics?

Chuck Huff

St. Olaf College, USA

ABSTRACT

In the same way that useful theory in knowledge management systems leads us to rethink the nature of knowledge (Spender & Scherer, 2007) a theory of ethics that is informed by current research in moral psychology will lead us to rethink the nature of ethical action. This chapter introduces a research program that has tracked ethical action among computer professionals and uses the insights from that research to make suggestions about how purposive moral action is undertaken and how it might be supported by knowledge management systems.

PROBLEMS, PURPOSES AND KNOWLEDGE

There is a consensus concerning the subject-matter of ethics so general that it would be tedious to document it. It is that the business of ethics is with “problems”, i.e. situations in which it is difficult to know what one should do; that the ultimate beneficiary of ethical analysis is the person who, in one of these situations, seeks rational ground for the decision he must make; that ethics is therefore primarily concerned to find such grounds, often conceived of as moral rules and the principles from which they can be derived (Pincoffs, 1971, p. 552).

After claiming that it would be tedious to do so, Edmund Pincoffs’ classic article on “Quandary Ethics” documents the extensive philosophical agreement that ethics is primarily about giving rational principles and procedures for solving moral problems, or “quandaries.” This agreement on the nature of ethics is also foundational to agreed-upon goals for the practical and professional ethics curriculum (Callahan, 1980).
If ethics is primarily about applying principles and procedures to make decisions in response to problems then what does knowledge have to do with it? Presumably, one needs to know the problem and the principles and then to apply the procedures. In much ethics teaching the problems are predefined by the cases, designed to highlight particular ethical principles, (Huff & Frey, 2005) and so not much effort is expended in defining the problem itself. Both in the classroom and on the job, the recommended procedure to define the problem is stakeholder analysis. Many decision support systems (e.g. Gotterbarn, 2001) use this approach to guide decision-making regarding the design of software systems. Thus, a knowledge management system to support such decisions would need to contain information about stakeholders and provide access to procedures and principles that could be applied to the problem.

This classic approach to ethics treats the problem as static and locates the expertise in the correct application of principles to the problem at hand. And the sort of knowledge needed to support such a process is relatively unproblematic factual knowledge that can be indexed and straightforwardly combined. In this approach, a knowledge management system to support ethical decisions should in principle be relatively simple to design and implement. It would include a structure to help the decision maker collect and organize the relevant factual knowledge, some processes that led the decision maker to evaluate various options in the decision space, and perhaps a way to systematize value tradeoffs in making a decision. This approach focuses the knowledge management system on the task of providing decision support, which in turn presumes that ethics is about the decisions one makes when confronted with a relevant choice.

But Pincoffs’ (1971) early essay casts doubt on this approach to ethics and insists that being ethical is more than responding appropriately to isolated decision problems. Likewise, our recent research on moral exemplars in computing (Huff, Barnard & Frey, 2008a; 2008b) provides a picture of ethical careers that are not primarily composed of a series of ethical decisions, but instead are constructed over time in response to life goals, organizational and social constraints, and idiosyncratic attachment to particular ethical goals (e.g. help the customer or the handicapped, reform privacy laws or software design standards) (Huff & Rogerson, 2005).

The purpose of this short essay is to introduce this alternative notion of ethics, a conception that is rooted in planned action over the life of a career and based in the goals of the individual actor in their organizational context. We might call this a purposive-action approach as opposed to the deliberative-decision approach described above. If this is a better picture of ethical action in the modern organization, what are its implications for knowledge management systems that aim to support this sort of ethical action?

THE COMPLEXITY OF PURPOSIVE MORAL ACTION

The picture of purposeful moral action we present is based on the most recent work in moral psychology (Haidt, 2008; Huff & Frey, 2005; Lapsley & Narvaez, 2005; Narvaez & Lapsley, 2005) and on an analysis of extensive “life-story” interviews with moral exemplars in computing (Huff & Rogerson, 2005). The picture is not narrowly focused on how the individuals made isolated ethical decisions in particular circumstances. Instead, it is focused on how each one became the sort of person who was able to recognize opportunities for moral action, to plan the steps to take advantage of the opportunities, and then to carry out those plans in complex and conflicting social and organizational contexts. In psychological terms we are interested in how individuals achieve sustained excellence in ethical behavior in the field of computing. In philosophical terms we are interested in how
Related Content

From Conceptual Models to Data Models
[www.igi-global.com/chapter/conceptual-models-data-models/30444?camid=4v1a](www.igi-global.com/chapter/conceptual-models-data-models/30444?camid=4v1a)

An Evolutionary Distributed Agent System: A Framework and Application to Manufacturing Design and Control
[www.igi-global.com/article/an-evolutionary-distributed-agent-system/154909?camid=4v1a](www.igi-global.com/article/an-evolutionary-distributed-agent-system/154909?camid=4v1a)

Light-Weight Composite Environmental Performance Indicators (LWC-EPI): A New Approach for Environmental Management Information Systems (EMIS)
[www.igi-global.com/article/light-weight-composite-environmental-performance/75785?camid=4v1a](www.igi-global.com/article/light-weight-composite-environmental-performance/75785?camid=4v1a)

Factors Influencing the Adoption of ISO/IEC 29110 in Thai Government Projects: A Case Study