Chapter 7
From Data to Knowledge: Data Mining

Tri Kurniawan Wijaya
Sekolah Tinggi Teknik Surabaya, Indonesia

ABSTRACT

This chapter will discuss a very useful technique to get (or to mine) a hidden information or knowledge which is lie in our data namely, data mining, which is a powerful and automatic (or semi-automatic) technique. Not only about the concept and theory, this chapter will also discuss about the application and implementation of data mining. Firstly, the authors will talk about data, information, and knowledge, whether they are different or not. After understand the term, they will discuss about what data mining is and what the importance of it. Second, they describe the process of gaining the hidden knowledge, how it is done, from the beginning until presenting the result. The authors will go through it step by step. In the next section, they will discuss about the several different tasks of data mining. In addition, to get a better understanding, the authors will compare data mining with other terminology which closely related so called data warehouse, and OLAP. For the last, but not the least, as stated before, this chapter will tell us about the real implementation of data mining in several different areas.

DOI: 10.4018/978-1-60960-102-7.ch007
INTRODUCTION

Data, Information and Knowledge

Before discussed any further about data mining, it is better for us to describe first what are data, information, and knowledge.

According to Palace (1996), Data are any facts, numbers, or text that can be processed by a computer. Recently, there are huge growing amounts of data in different formats and different databases. This includes:

- Operational or transactional data, data that are obtained from sales, cost, inventory, payroll, and accounting.
- Non-operational data, data are obtained from forecasting, industry, and macroeconomic data.
- Metadata, that is data about the data itself, such as logical database design or data dictionary definitions.

From data we can get information, which is the patterns, associations, or relationships among all the data. For example, from the analysis of point of sale transaction we can obtain information about which products are sold and when.

Furthermore, information can be converted into knowledge about historical patterns and future trends. For instance, the monthly information from the point of sale transaction can be analyzed to understand the consumer buying behavior. As a consequence, the retailer could determine which promotional effort is worth, or which products are going to be advertised more than the others.

What Data Mining is

In his books, Berson (2000) stated that data mining is an automated process of detecting relevant patterns in database. In his books, Berson gave an interesting example about how finding a pattern could be useful: suppose that there is a pattern that showed that married males with children tend to drive a sports car compared to married males without children then this pattern would indeed valuable and quite surprising for the marketing manager.

When discovering patterns in data, the process itself should be automatic or (usually) semiautomatic. The patterns discovered must be meaningful such that they lead to some advantage. Moreover, useful patterns allow us to make nontrivial predictions on new data. There are two approaches for the expression of a pattern (Witten & Frank, 2005): as a black box whose inners are effectively incomprehensible and as a transparent box whose construction reveals the structure of the pattern. Both, we are assuming, make good predictions. The difference between them is on their structure, whether their structure represent the pattern that can be examined and analyzed or not. In other words, we interested in patterns that also explain something about the data itself.

In order to understand data mining better, Palace (1996) gave a good example about data mining, data mining software and analysis. There are retailers that used the data mining capacity of Oracle software to analyze buying patterns of their customers. It is found that when men bought diapers on Thursdays and Saturdays, many of them also buy beer. After some analysis, it is revealed that these men typically did their weekly grocery shopping on Saturdays. On Thursdays, however, they only bought a few items. The retailers concluded that these men purchased the beer to have it available for the upcoming weekend. Then the retailers could use this newly discovered information in various ways to increase revenue. For example, we could sell beer and diapers at full price on Thursday as well as move the beer display next to the diaper display.

Data mining is also about solving problems by analyzing data in databases. For example, we want to figure out about the loyalty of our customer in a highly competitive marketplace. A database of customer, along with customer profiles, could be
11 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product’s webpage: www.igi-global.com/chapter/data-knowledge-data-mining/48393?camid=4v1


Related Content

Variational Approach Based Image Pre-Processing Techniques for Virtual Colonoscopy

Video Summarization by Redundancy Removing and Content Ranking
Tao Wang, Yue Gao, Patricia Wang, Wei Hu, Jianguo Li, Yangzhou Du and Yimin Zhang (2011). Computer Vision for Multimedia Applications: Methods and Solutions (pp. 91-101). www.igi-global.com/chapter/video-summarization-redundancy-removing-content/48315?camid=4v1a

Comparative Performance Analysis of Optimization Techniques on Vector Quantization for Image Compression

An Improved Lane Detection and Tracking Method for Lane Departure Warning Systems